Skip to main content
Dryad

Data from: Transcriptome sequencing and microarray development for the woodrat (Neotoma spp.): custom genetic tools for exploring herbivore ecology

Cite this dataset

Malenke, Jael et al. (2013). Data from: Transcriptome sequencing and microarray development for the woodrat (Neotoma spp.): custom genetic tools for exploring herbivore ecology [Dataset]. Dryad. https://doi.org/10.5061/dryad.25696

Abstract

Massively parallel sequencing has enabled the creation of novel, in-depth genetic tools for nonmodel, ecologically important organisms. We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) using the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). We tested the microarray with three experiments: one across species with similar habitat (thus, dietary) niches, one across species with different habitat niches and one across populations within a species. The resulting one-colour arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). There were a multitude of expression differences across the woodrat treatments, many of which related to biotransformation processes and activities. The pattern and function of the differences indicate shared ecological pressures, and not merely phylogenetic distance, play an important role in shaping gene expression profiles of woodrat species and populations. The quality and functionality of the woodrat transcriptome and custom microarray suggest these tools will be valuable for expanding the scope of herbivore biology, as well as the exploration of conceptual topics in ecology.

Usage notes