Skip to main content
Dryad

Data from: Thermal sensitivity of immune function: evidence against a generalist-specialist tradeoff among endothermic and ectothermic vertebrates

Cite this dataset

Butler, Michael W. et al. (2013). Data from: Thermal sensitivity of immune function: evidence against a generalist-specialist tradeoff among endothermic and ectothermic vertebrates [Dataset]. Dryad. https://doi.org/10.5061/dryad.2d5m8

Abstract

Animal body temperature (T_body) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in T_body (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean T_body) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.

Usage notes