Skip to main content
Dryad

Data from: Does cohistory constrain information use? Evidence for generalized risk assessment in nonnative prey

Cite this dataset

Grason, Emily W. (2016). Data from: Does cohistory constrain information use? Evidence for generalized risk assessment in nonnative prey [Dataset]. Dryad. https://doi.org/10.5061/dryad.86sk5

Abstract

Though prey use a variety of information sources to assess predation risk, evolutionary cohistory with a predator could constrain information use, and nonnative prey might fail to recognize risk from a novel predator. Nonnative prey might instead use generalized risk assessment, relying on general alarm signals from injured conspecifics rather than cues from predators. I tested the influence of shared predator-prey history on information use, comparing responses among three native and four nonnative prey species to chemical cues from a native predator and cues from injured conspecific prey. Nonnative prey demonstrated information generalism: (1) responding stronger to alarm cues released by injured conspecific prey than to cues from predators and (2) responding similarly to alarm cues as to cues from predators consuming injured conspecific prey. By contrast, for native prey, multiple information sources were required to elicit the greatest defense. The influence of other sources of chemical information was not predicted by cohistory with the predator: only one nonnative snail responded to the predator; digestion was important for only two native species; the identity of injured prey was important for all prey; and predator and prey cues contributed additively to prey response. Information generalism, hypothesized to be costly in coevolved interactions, could facilitate invasions as a driver of or response to introduction to novel habitats.

Usage notes

Location

USA
Washington State
Northeast Pacific coast