Skip to main content
Dryad

Data from: Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

Data files

Mar 25, 2011 version files 758.80 KB

Abstract

BACKGROUND: Evolutionary novelties often appear by conferring completely new functions to pre- existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement. RESULTS: Here, we performed behavioral observations in the poorly known African pipid genus Pseudhymenochirus and demonstrate that sound production in this aquatic frog is air-driven. However, morphological comparisons revealed an indisputable pipid nature of Pseudhymenochirus larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing Pseudhymenochirus nested among other pipids. CONCLUSIONS: We conclude that although Pseudhymenochirus has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.