Skip to main content
Dryad

Data from: Environmental controls on canopy foliar N distributions in a neotropical lowland forest

Cite this dataset

Balzotti, Christopher S. et al. (2016). Data from: Environmental controls on canopy foliar N distributions in a neotropical lowland forest [Dataset]. Dryad. https://doi.org/10.5061/dryad.ck585

Abstract

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and Partial Least Squares Regression (PLSR) to quantify canopy foliar nitrogen (N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of canopy foliar N using a gradient boosting model (GBM) technique. At a local scale, where climate and substrate where constant, we explored the influence of slope position on canopy N by quantifying canopy N on remnant terraces, their adjacent slopes and knife edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting canopy N. Observed canopy N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting canopy foliar N (30 and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the filed collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in canopy N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.

Usage notes

Funding

National Science Foundation, Award: DEB 1263651

Location

Osa Peninsula
Costa Rica