Skip to main content
Dryad

Data from: Cell proliferation and migration during early development of a symbiotic scleractinian coral

Cite this dataset

Lecointe, Agathe; Domart-Coulon, Isabelle; Alain, Paris; Meibom, Anders (2016). Data from: Cell proliferation and migration during early development of a symbiotic scleractinian coral [Dataset]. Dryad. https://doi.org/10.5061/dryad.d9v45

Abstract

In scleractinian reef-building corals, patterns of cell self-renewal, migration and death remain virtually unknown, limiting our understanding of cellular mechanisms underlying initiation of calcification, and ontogenesis of the endosymbiotic dinoflagellate relationship. In this study we pulse-labeled the coral Stylophora pistillata for 24 h with BrdU at four life stages (planula, early metamorphosis, primary polyp, and adult colony) to investigate coral and endosymbiont cell proliferation during development, while simultaneously recording TUNEL-positive, i.e. apoptotic, nuclei. In the primary polyp, the fate of BrdU-labeled cells was tracked during a 3 days chase. The pharynx and gastrodermis were identified as the most proliferative tissues in the developing polyp, and BrdU-labeled cells accumulated in the surface pseudostratified epithelium and the skeletogenic calicodermis during the chase, revealing cell migration to these epithelia. Surprisingly, the lowest cell turnover was recorded in the calicodermis at all stages, despite active, ongoing skeletal deposition. In dinoflagellate symbionts, DNA synthesis was systematically higher than in coral host gastrodermis, especially in planula and early metamorphosis. The symbiont to host cell ratio remained however constant, indicating successive post-mitotic control mechanisms by the host of its dinoflagellate density in early life stages, increasingly shifting to apoptosis in the growing primary polyp.

Usage notes

Location

Red Sea