Skip to main content
Dryad

Data from: Survival by genotype: patterns at Mc1r are not black and white at the White Sands ecotone

Cite this dataset

Des Roches, Simone et al. (2016). Data from: Survival by genotype: patterns at Mc1r are not black and white at the White Sands ecotone [Dataset]. Dryad. https://doi.org/10.5061/dryad.f79n4

Abstract

Measuring links among genotype, phenotype and survival in the wild has long been a focus of studies of adaptation. We conducted a 4-year capture–recapture study to measure survival by genotype and phenotype in the Southwestern Fence Lizard (Sceloporus cowlesi) at the White Sands ecotone (transition area between white sands and dark soil habitats). We report several unanticipated findings. First, in contrast with previous work showing that cryptic blanched coloration in S. cowlesi from the heart of the dunes is associated with mutations in the melanocortin-1 receptor gene (Mc1r), ecotonal S. cowlesi showed minimal association between colour phenotype and Mc1r genotype. Second, the frequency of the derived Mc1r allele in ecotonal S. cowlesi appeared to decrease over time. Third, our capture–recapture data revealed a lower survival rate for S. cowlesi individuals with the derived Mc1r allele. Thus, our results suggest that selection at the ecotone may have favoured the wild-type allele in recent years. Even in a system where a genotype–phenotype association appeared to be black and white, our study suggests that additional factors – including phenotypic plasticity, epistasis, pleiotropy and gene flow – may play important roles at the White Sands ecotone. Our study highlights the importance of linking molecular, genomic and organismal approaches for understanding adaptation in the wild. Furthermore, our findings indicate that dynamics of natural selection can be particularly complex in transitional habitats like ecotones and emphasize the need for future research that examines the patterns of ongoing selection in other ecological ‘grey’ zones.

Usage notes

Location

White Sands
New Mexico