Skip to main content
Dryad

Data from: The effects of outbreeding on a parasitoid wasp fixed for infection with a parthenogenesis-inducing Wolbachia symbiont

Cite this dataset

Lindsey, Amelia R. I.; Stouthamer, Richard (2017). Data from: The effects of outbreeding on a parasitoid wasp fixed for infection with a parthenogenesis-inducing Wolbachia symbiont [Dataset]. Dryad. https://doi.org/10.5061/dryad.j24c8

Abstract

Trichogramma wasps can be rendered asexual by infection with the maternally inherited symbiont Wolbachia. Previous studies indicate the Wolbachia strains infecting Trichogramma wasps are host-specific, inferred by failed horizontal transfer of Wolbachia to novel Trichogramma hosts. Additionally, Trichogramma can become dependent upon their Wolbachia infection for the production of female offspring, leaving them irreversibly asexual, further linking host and symbiont. We hypothesized Wolbachia strains infecting irreversibly asexual, resistant to horizontal transfer Trichogramma would show adaptation to a particular host genetic background. To test this, we mated Wolbachia-dependent females with males from a Wolbachia-naïve population to create heterozygous wasps. We measured sex ratios and fecundity, a proxy for Wolbachia fitness, produced by heterozygous wasps, and by their recombinant offspring. We find a heterozygote advantage, resulting in higher fitness for Wolbachia, as wasps will produce more offspring without any reduction in the proportion of females. While recombinant wasps did not differ in total fecundity after ten days, recombinants produced fewer offspring early on, leading to an increased female-biased sex ratio for the whole brood. Despite the previously identified barriers to horizontal transfer of Wolbachia to and from Trichogramma pretiosum, there were no apparent barriers for Wolbachia to induce parthenogenesis in these non-native backgrounds. This is likely due to the route of infection being introgression rather than horizontal transfer, and possibly the co-evolution of Wolbachia with the mitochondria rather than the nuclear genome. These results help to elucidate the mechanisms by which Wolbachia adapt to hosts and the evolution of host-symbiont phenotypes.

Usage notes

Funding

National Science Foundation, Award: DEB-1501227