Skip to main content
Dryad

Data from: Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana

Cite this dataset

Pelc, Sandra E.; Linder, C. Randal (2015). Data from: Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana [Dataset]. Dryad. https://doi.org/10.5061/dryad.j61sp

Abstract

Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high- and low-melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high-melting point lines had lower fitness relative to those against low-melting point lines, which matched expectations for undifferentiated emergence times.

Usage notes