Skip to main content
Dryad

Data from: What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper

Cite this dataset

Valverde, J. Pablo; Schielzeth, Holger (2015). Data from: What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper [Dataset]. Dryad. https://doi.org/10.5061/dryad.j95t2

Abstract

Background: Colour polymorphisms are a fascinating facet of many natural populations of plants and animals, and the selective processes that maintain such variation are as relevant as the processes which promote their development. Orthoptera, the insect group that encompasses grasshoppers and bush crickets, includes a particularly large number of species that are colour polymorphic with a marked green-brown polymorphism being particularly widespread. Colour polymorphism has been associated with the need for crypsis and background matching and background-dependent homochromy has been described in a few species. However, when and how different environmental conditions influence variation in colour remains poorly understood. Here we test for effects of background colour and ambient temperature on the occurrence of colour morph switches (green to brown or brown to green) and developmental darkening in the alpine dwelling club-legged grasshopper Gomphocerus sibiricus. Results: We monitored individually housed nymphae across three of their four developmental stages and into the first week after final ecdysis. Our data show an absence of colour morph switches in G. sibiricus, without a single switch observed in our sample. Furthermore, we test for an effect of temperature on colouration by manipulating radiant heat, a limiting factor in alpine habitats. Radiant heat had a significant effect on developmental darkening: individuals under low radiant heat tended to darken, while individuals under high radiant heat tended to lighten within nymphal stages. Young imagoes darkened under either condition. Conclusions: Our results indicate a plastic response to a variable temperature and indicate that melanin, a multipurpose pigment responsible for dark colouration and presumed to be costly, seems to be strategically allocated according to the current environmental conditions. Unlike other orthopterans, the species is apparently unable to switch colour morphs (green/brown) during development, suggesting that colour morphs are determined genetically (or very early during development) and that other processes have to contribute to crypsis and homochromy in this species.

Usage notes

Location

Valais
Central Europe
Switzerland
Sierre