Skip to main content
Dryad

Data from: Host resistance and pathogen infectivity in host populations with varying connectivity

Cite this dataset

Carlsson-Graner, Ulla; Thrall, Peter H. (2015). Data from: Host resistance and pathogen infectivity in host populations with varying connectivity [Dataset]. Dryad. https://doi.org/10.5061/dryad.s2r1c

Abstract

Theory predicts that hosts and pathogens will evolve higher resistance and aggressiveness in systems where populations are spatially connected than in situations where populations are isolated and dispersal is more local. In a large cross-inoculation experiment we surveyed patterns of host resistance and pathogen infectivity in anther-smut diseased Viscaria alpina populations from three contrasting areas where populations range from continuous, through patchy but spatially connected to highly isolated demes. In agreement with theory, isolated populations of V. alpina were more susceptible on average than either patchily distributed or continuous populations. While increased dispersal in connected systems increases disease spread, it may also increase host gene flow and the potential for greater host resistance to evolve. In the Viscaria-Microbotryum system, pathogen infectivity mirrored patterns of host resistance with strains from the isolated populations being the least infective and strains from the more resistant continuous populations being the most infective on average, suggesting that high resistance selects for high infectivity. To our knowledge this study is the first to characterize the impacts of varying spatial connectivity on patterns of host resistance and pathogen infectivity in a natural system.

Usage notes

Location

Sweden