Skip to main content
Dryad

Data from: Loss of migratory behavior increases infection risk for a butterfly host

Cite this dataset

Satterfield, Dara A.; Maerz, John C.; Altizer, Sonia (2014). Data from: Loss of migratory behavior increases infection risk for a butterfly host [Dataset]. Dryad. https://doi.org/10.5061/dryad.s4dv0

Abstract

Long-distance animal migrations have important consequences for infectious disease dynamics. In some cases, migration lowers pathogen transmission by removing infected individuals during strenuous journeys and allowing animals to periodically escape contaminated habitats. Human activities are now causing some migratory animals to travel shorter distances or form sedentary (non-migratory) populations. We focused on North American monarch butterflies and a specialist protozoan parasite to investigate how the loss of migratory behaviours affects pathogen spread and evolution. Each autumn, monarchs migrate from breeding grounds in the eastern US and Canada to wintering sites in central Mexico. However, some monarchs have become non-migratory and breed year-round on exotic milkweed in the southern US. We used field sampling, citizen science data and experimental inoculations to quantify infection prevalence and parasite virulence among migratory and sedentary populations. Infection prevalence was markedly higher among sedentary monarchs compared with migratory monarchs, indicating that diminished migration increases infection risk. Virulence differed among parasite strains but was similar between migratory and sedentary populations, potentially owing to high gene flow or insufficient time for evolutionary divergence. More broadly, our findings suggest that human activities that alter animal migrations can influence pathogen dynamics, with implications for wildlife conservation and future disease risks.

Usage notes

Location

North America