Skip to main content
Dryad

High temperatures drive offspring mortality in a cooperatively breeding bird

Data files

Aug 07, 2020 version files 400.71 KB

Abstract

An improved understanding of life history responses to current environmental variability is required to predict species-specific responses to anthopogenic climate change. Previous research has suggested that cooperation in social groups may buffer individuals against some of the negative effects of unpredictable climates. We use a 15-year dataset on a cooperative-breeding arid-zone bird, the southern pied babbler Turdoides bicolor, to test i) whether environmental conditions and group size correlate with survival of young during three development stages (egg, nestling, fledgling), and ii) whether group size mitigates the impacts of adverse environmental conditions on reproductive success. Exposure to high mean daily maximum temperatures (mean Tmax) during early development was associated with reduced survival probabilities of young in all three development stages. No young survived when mean Tmax > 38°C across all group sizes. Low reproductive success at high temperatures has broad implications for recruitment and population persistence in avian communities given the rapid pace of advancing climate change. That impacts of high temperatures were not moderated by group size, a somewhat unexpected result given prevailing theories around the influence of environmental uncertainty on the evolution of cooperation, suggests that cooperative breeding strategies are unlikely to be advantageous in the face of rapid anthropogenic climate change. An improved understanding of life history responses to current environmental variability is required to predict species-specific responses to anthopogenic climate change. Previous research has suggested that cooperation in social groups may buffer individuals against some of the negative effects of unpredictable climates. We use a 15-year dataset on a cooperative-breeding arid-zone bird, the southern pied babbler Turdoides bicolor, to test i) whether environmental conditions and group size correlate with survival of young during three development stages (egg, nestling, fledgling), and ii) whether group size mitigates the impacts of adverse environmental conditions on reproductive success. Exposure to high mean daily maximum temperatures (mean Tmax) during early development was associated with reduced survival probabilities of young in all three development stages. No young survived when mean Tmax > 38°C across all group sizes. Low reproductive success at high temperatures has broad implications for recruitment and population persistence in avian communities given the rapid pace of advancing climate change. That impacts of high temperatures were not moderated by group size, a somewhat unexpected result given prevailing theories around the influence of environmental uncertainty on the evolution of cooperation, suggests that cooperative breeding strategies are unlikely to be advantageous in the face of rapid anthropogenic climate change.