Skip to main content
Dryad

Monitoring the evolution of relative product populations at early times during a photochemical reaction

Data files

May 04, 2023 version files 10 GB

Click names to download individual files

Abstract

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps towards understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species amongst the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offers a unique route to determine time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule thiophenone. This strategy reveals an unexpectedly high (~50%) yield of an episulfide isomer containing a strained 3-membered ring within ~1 ps at early times and rapid interconversions between the rival photoproducts.