Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards
Data files
Aug 12, 2020 version files 177.32 MB
-
Dataset_S1_Smith_UCE50_morph_ML.txt
52.68 MB
-
Dataset_S10_REA_morph_Bayes.nex
12.83 KB
-
Dataset_S2_REA_UCE50_morph_ML.txt
51.64 MB
-
Dataset_S3_Smith_UCE40_morph_ML.txt
16.32 MB
-
Dataset_S4_REA_UCE40_morph_ML.txt
16.01 MB
-
Dataset_S5_Smith_UCE40_morph_Bayes.nex
16.64 MB
-
Dataset_S6_REA_UCE40_morph_Bayes.nex
16.33 MB
-
Dataset_S7_Smith_morph_ML.txt
5.14 KB
-
Dataset_S8_REA_morph_ML.txt
12.17 KB
-
Dataset_S9_Smith_morph_Bayes.nex
6.12 KB
-
Fig_S1_44_50_RAxML.pdf
172.74 KB
-
Fig_S10_Smith_RAxML.pdf
149.52 KB
-
Fig_S11_REA_RAxML.pdf
149.76 KB
-
Fig_S12_Smith_MrBayes.pdf
149.26 KB
-
Fig_S13_REA_MrBayes.pdf
148.36 KB
-
Fig_S14_44_50_REA_noAciprion_RAxML.pdf
168.91 KB
-
Fig_S15_44_40_REA_noAciprion_MrBayes.pdf
172.98 KB
-
Fig_S16_44_40_REA_noAciprion_RAxML.pdf
165.65 KB
-
Fig_S17_44_40_Smith_nofossils_MrBayes.pdf
170.03 KB
-
Fig_S18_44_50_Smith_RAxML_weight2.pdf
171.40 KB
-
Fig_S19_44_50_Smith_RAxML_weight3.pdf
174.55 KB
-
Fig_S2_44_50_Smith_RAxML.pdf
175.83 KB
-
Fig_S20_44_50_Smith_RAxML_weight4.pdf
168.59 KB
-
Fig_S21_44_50_Smith_RAxML_weight5.pdf
169.65 KB
-
Fig_S22_44_50_Smith_RAxML_weight10.pdf
168.36 KB
-
Fig_S23_44_50_Smith_RAxML_weight100.pdf
166.98 KB
-
Fig_S24_44_50_Smith_RAxML_weight1000.pdf
168.35 KB
-
Fig_S25_44_50_REA_RAxML_weight2.pdf
165.32 KB
-
Fig_S26_44_50_REA_RAxML_weight3.pdf
167.11 KB
-
Fig_S27_44_50_REA_RAxML_weight4.pdf
173.72 KB
-
Fig_S28_44_50_REA_RAxML_weight5.pdf
171.20 KB
-
Fig_S29_44_50_REA_RAxML_weight10.pdf
166.80 KB
-
Fig_S3_44_50_REA_RAxML.pdf
172.76 KB
-
Fig_S30_44_50_REA_RAxML_weight100.pdf
168.03 KB
-
Fig_S31_44_50_REA_RAxML_weight1000.pdf
161.76 KB
-
Fig_S32_44_40_Smith_RAxML_weight2.pdf
176.37 KB
-
Fig_S33_44_40_Smith_RAxML_weight3.pdf
175.98 KB
-
Fig_S34_44_40_Smith_RAxML_weight4.pdf
175.57 KB
-
Fig_S35_44_40_Smith_RAxML_weight5.pdf
167.73 KB
-
Fig_S36_44_40_Smith_RAxML_weight10.pdf
168.79 KB
-
Fig_S37_44_40_Smith_RAxML_weight100.pdf
173.34 KB
-
Fig_S38_44_40_Smith_RAxML_weight1000.pdf
168.94 KB
-
Fig_S39_44_40_REA_RAxML_weight2.pdf
166.86 KB
-
Fig_S4_44_40_RAxML.pdf
176.21 KB
-
Fig_S40_44_40_REA_RAxML_weight3.pdf
168.09 KB
-
Fig_S41_44_40_REA_RAxML_weight4.pdf
168.18 KB
-
Fig_S42_44_40_REA_RAxML_weight5.pdf
165.74 KB
-
Fig_S43_44_40_REA_RAxML_weight10.pdf
166.76 KB
-
Fig_S44_44_40_REA_RAxML_weight100.pdf
166.73 KB
-
Fig_S45_44_40_REA_RAxML_weight1000.pdf
161.32 KB
-
Fig_S5_44_40_Smith_RAxML.pdf
175.75 KB
-
Fig_S6_44_40_REA_RAxML.pdf
172.38 KB
-
Fig_S7_44_40_MrBayes.pdf
170.09 KB
-
Fig_S8_44_40_Smith_MrBayes.pdf
170.29 KB
-
Fig_S9_44_40_REA_MrBayes.pdf
171.82 KB
-
Supplementary_data_figures_Readme.docx
99.82 KB
Abstract
Genomic datasets generated by next-generation sequencing are increasingly prevalent in phylogenetics, but morphological data are required to phylogenetically place fossils, corroborate molecular hypotheses, and date phylogenies. Combined-evidence analyses provide an integrative assessment of tree topology. However, no attempt has been made to simultaneously analyze next-generation genomic datasets and morphological data, and the future of morphology in the context of genomic data is uncertain. I conducted combined-evidence analyses that include genomic and morphological datasets, specifically, with ultraconserved elements and two morphological matrices. In unweighted maximum likelihood and Bayesian combined-evidence analyses, morphological signal was dwarfed by the ultraconserved elements, and some node support values were reduced relative to ultraconserved element-only analyses. Increasing the weight of morphological characters allowed those data to influence the tree, but weighting subjectivity should be considered in future analyses. More attempts should be made to simultaneously analyze genomic and morphological datasets.