Skip to main content
Dryad

Data from: A Bayesian approach for inferring the impact of a discrete character on rates of continuous-character evolution in the presence of background-rate variation

Data files

Nov 01, 2019 version files 119.04 MB

Abstract

Understanding how and why rates of character evolution vary across the Tree of Life is central to many evolutionary questions; e.g., does the trophic apparatus (a set of continuous characters) evolve at a higher rate in fish lineages that dwell in reef versus non-reef habitats (a discrete character)? Existing approaches for inferring the relationship between a discrete character and rates of continuous-character evolution rely on comparing a null model (in which rates of continuous-character evolution are constant across lineages) to an alternative model (in which rates of continuous-character evolution depend on the state of the discrete character under consideration). However, these approaches are susceptible to a "straw-man" effect: the influence of the discrete character is inflated because the null model is extremely unrealistic. Here, we describe MuSSCRat, a Bayesian approach for inferring the impact of a discrete trait on rates of continuous-character evolution in the presence of alternative sources of rate variation ("background-rate variation"). We demonstrate by simulation that our method is able to reliably infer the degree of state-dependent rate variation, and show that ignoring background-rate variation leads to biased inferences regarding the degree of state-dependent rate variation in grunts (the fish group Haemulidae).