Skip to main content
Dryad

Foliar fungal pathogens along an elevation gradient in Tibetan alpine meadow

Data files

May 05, 2021 version files 14.44 KB

Abstract

Foliar fungal diseases have a great influence on both photosynthesis and ecosystem function. However, information on how the elevation gradient (which is one of the most important biogeographic factors) affects foliar fungal diseases is scarce. Here, we did an investigation along 3200 m ~ 4000 m in an alpine meadow and arranged 30 quadrats collecting data of foliar fungal diseases, plant composition and soil properties to study the plant community-mediated (through changes in plant biomass, diversity, phylogenetic structure and community composition) and soil-mediated (through changes in soil properties) effects of elevation on community-level foliar fungal diseases. Based on linear models, we found that elevation did not significantly affect most of the individual plant species disease severity and community pathogen load. Meanwhile, a combination of community proneness and Pielou’s evenness index was the best model in predicting pathogen load. The structural equation model further confirmed that although elevation significantly changed both the plant community indices and soil properties, elevation mainly drove pathogen load via plant community-mediated effects, rather than soil-mediated effects. Hence, we provided new empirical evidence of the plant community-mediated effects on plant diseases by changing the composition and the evenness of plant community along elevation. Our study will improve the predictability of plant diseases, especially under the background of global climate change.