Data from: A genetic signature of the evolution of loss of flight in the Galapagos cormorant
Data files
Mar 29, 2018 version files 39.72 MB
-
Cormorant_alignment.nex
37.26 MB
-
Cormorant_phylogeny.con.tre
9.02 KB
-
DCHS1.alg
366.38 KB
-
DVL1.alg
77.08 KB
-
DYNC2H1.alg
395.46 KB
-
EVC.alg
108.80 KB
-
FAT1.alg
500.88 KB
-
GLI2.alg
175.28 KB
-
GLI3.alg
172.10 KB
-
IFT122.alg
137.70 KB
-
KIF7.alg
139.26 KB
-
OFD1.alg
124.70 KB
-
TALPID3.alg
186.20 KB
-
WDR34.alg
64.26 KB
Abstract
We have a limited understanding of the genetic and molecular basis of evolutionary changes in the size and proportion of limbs. We studied wing and pectoral skeleton reduction leading to flightlessness in the Galapagos cormorant (Phalacrocorax harrisi). We sequenced and de novo assembled the genomes of four cormorant species and applied a predictive and comparative genomics approach to find candidate variants that may have contributed to the evolution of flightlessness. These analyses and cross-species experiments in Caenorhabditis elegans and in chondrogenic cell lines implicated variants in genes necessary for transcriptional regulation and function of the primary cilium. Cilia are essential for Hedgehog signaling, and humans affected by skeletal ciliopathies suffer from premature bone growth arrest, mirroring skeletal features associated with loss of flight.