Skip to main content
Dryad

Circulating KLRG1+ memory T cells retain the flexibility to become tissue-resident

Abstract

KLRG1+ CD8 T cells persist for months after acute infections are cleared and maintain high levels of effector molecules, contributing essential protective immunity against systemic pathogens. Upon secondary infection, these long-lived effector cells (LLECs) are incapable of forming other circulating KLRG1 memory subsets such as central and effector memory T cells. Thus, KLRG1+ memory T cells are frequently referred to as a terminally differentiated population that is relatively short lived. Here, we show that during infection, effector cells derived from LLEC rapidly enter nonlymphoid tissues and reduce pathogen burden, but are largely dependent on receiving antigen cues from vascular endothelial cells. Single-cell RNA sequencing revealed that secondary memory cells in nonlymphoid tissues arising from either KLRG1+ or KLRG1− memory precursors developed a similar transcriptional signature. Thus, although KLRG1+ memory T cells cannot differentiate into other circulating memory populations, they still retain the flexibility to enter tissues and establish residency.