Skip to main content
Dryad

Inner speech in motor cortex and implications for speech neuroprostheses

Abstract

Speech brain-computer interfaces (BCIs) show promise in restoring communication to people with paralysis, but have also prompted discussions regarding their potential to decode private inner speech. Separately, inner speech may be a way to bypass the current approach of requiring speech BCI users to physically attempt speech, which is fatiguing and can slow communication. Using multi-unit recordings from four participants, we found that inner speech is robustly represented in motor cortex, and that imagined sentences can be decoded in real-time. The representation of inner speech was highly correlated with attempted speech, though we also identified a neural “motor-intent” dimension that differentiates the two. We investigated the possibility of decoding private inner speech and found that some aspects of free-form inner speech could be decoded during sequence recall and counting tasks. Finally, we demonstrate high-fidelity strategies that prevent speech BCIs from unintentionally decoding private inner speech.