Data from: Study of regional differences in GC content values in chromosomes of the guppy and related fish species
Data files
Aug 06, 2020 version files 12.83 MB
-
~$st_of_files_for_Dryad.docx
162 B
-
Autosomal_segregation_(6_fams_HT_results).xlsx
341.94 KB
-
Autosomal_segregation_results_(by_LG).xlsx
426.23 KB
-
code.py
1.35 KB
-
G1_HOMOPLOT.png
69.39 KB
-
G10_HOMOPLOT.png
64.82 KB
-
G11_HOMOPLOT.png
67.05 KB
-
G12_HOMOPLOT.png
67.52 KB
-
G13_HOMOPLOT.png
66.60 KB
-
G14_HOMOPLOT.png
66.20 KB
-
G15_HOMOPLOT.png
66.04 KB
-
G16_HOMOPLOT.png
69.32 KB
-
G17_HOMOPLOT.png
67.15 KB
-
G18_HOMOPLOT.png
66.11 KB
-
G19_HOMOPLOT.png
70.02 KB
-
G2_HOMOPLOT.png
72.95 KB
-
G20_HOMOPLOT.png
67.28 KB
-
G21_HOMOPLOT.png
65.73 KB
-
G22_HOMOPLOT.png
68.40 KB
-
G23_HOMOPLOT.png
67.36 KB
-
G3_HOMOPLOT.png
65.89 KB
-
G4_HOMOPLOT.png
69.15 KB
-
G5_HOMOPLOT.png
66.29 KB
-
G6_HOMOPLOT.png
69.31 KB
-
G7_HOMOPLOT.png
66.13 KB
-
G8_HOMOPLOT.png
67.69 KB
-
G9_HOMOPLOT.png
68.54 KB
-
GC_intron_Guppyplot_[OMIT].pdf
387.50 KB
-
GC_intron_Platyfishplot.pdf
424.68 KB
-
GC_Picta_Description_Fixed.docx
22.85 KB
-
GC3_CPA_guppy.pdf
154.68 KB
-
GC3_CPA_platyfish.pdf
162.34 KB
-
intronicGC(LOESS).R
777 B
-
LG1_P5_G_GC3.png
333.74 KB
-
LG10_P23_G_GC3.png
284.17 KB
-
LG11_P13_G_GC3.png
296.94 KB
-
LG12_P8_G_GC3.png
286.78 KB
-
LG13_P18_G_GC3.png
327.69 KB
-
LG14_P11_G_GC3.png
301.61 KB
-
LG15_P22_G_GC3.png
289.05 KB
-
LG16_P3_G_GC3.png
296.34 KB
-
LG17_P6_G_GC3.png
301.87 KB
-
LG18_P14_G_GC3.png
297.98 KB
-
LG19_P10_G_GC3.png
283.89 KB
-
LG2_P24_G_GC3.png
283.28 KB
-
LG2_P7_G_GC3.png
352.16 KB
-
LG20_P21_G_GC3.png
260.49 KB
-
LG21_P15_G_GC3.png
252.48 KB
-
LG22_P19_G_GC3.png
255.49 KB
-
LG23_P17_G_GC3.png
207.95 KB
-
LG3_P4_G_GC3.png
315.35 KB
-
LG4_P9_G_GC3.png
306.67 KB
-
LG5_P20_G_GC3.png
321.73 KB
-
LG6_P2_G_GC3.png
312.66 KB
-
LG7_P1_G_GC3.png
312.29 KB
-
LG8_P16_G_GC3.png
269.85 KB
-
LG9_P12_G_GC3.png
304.74 KB
-
List_of_files_for_Dryad.docx
17.99 KB
-
List_of_Python_and_r_code_for_Dryad.docx
18.47 KB
-
maincode.py
6.77 KB
-
PICTA_GC_LG1_FIN.png
103.83 KB
-
PICTA_GC_LG10_FIN.png
90.13 KB
-
PICTA_GC_LG11_FIN.png
97.72 KB
-
PICTA_GC_LG12_FIN.png
99.50 KB
-
PICTA_GC_LG13_FIN.png
98.48 KB
-
PICTA_GC_LG14_FIN.png
95.54 KB
-
PICTA_GC_LG15_FIN.png
96.18 KB
-
PICTA_GC_LG16_FIN.png
102.66 KB
-
PICTA_GC_LG17_FIN.png
100.01 KB
-
PICTA_GC_LG18_FIN.png
87.22 KB
-
PICTA_GC_LG19_FIN.png
101.70 KB
-
PICTA_GC_LG2_FIN.png
111.98 KB
-
PICTA_GC_LG20_FIN.png
88.45 KB
-
PICTA_GC_LG21_FIN.png
94.86 KB
-
PICTA_GC_LG22_FIN.png
94.44 KB
-
PICTA_GC_LG23_FIN.png
87.45 KB
-
PICTA_GC_LG3_FIN.png
95.31 KB
-
PICTA_GC_LG4_FIN.png
101.25 KB
-
PICTA_GC_LG5_FIN.png
102.78 KB
-
PICTA_GC_LG6_FIN.png
100.69 KB
-
PICTA_GC_LG7_FIN.png
101.52 KB
-
PICTA_GC_LG8_FIN.png
105.03 KB
-
PICTA_GC_LG9_FIN.png
101.03 KB
Abstract
Genetic and physical mapping of the guppy (P. reticulata) have shown that recombination patterns differ greatly between males and females. Crossover events occur evenly across the chromosomes in females, but in male meiosis they are restricted to the tip furthest from the centromere of each chromosome, creating very high recombination rates per megabase, similar to the high rates in of pseudo-autosomal regions (PARs) of mammalian sex chromosomes. We here used the intronic GC content to indirectly infer the recombination patterns on guppy chromosomes. This is based on evidence that recombination is associated with GC-biased gene conversion, so that genome regions with high recombination rates should be detectable by high GC content. We used intron sequences and 3rd positions of codons, in order to make comparisons between sequences that are matched, as far as possible, with respect to selective constraints. Both these types of sites are likely to be under weak selection. Almost all guppy chromosomes, including the sex chromosome (LG12), prove to have very high GC values near their assembly ends, suggesting high recombination rates due to strong crossover localisation in male meiosis. Our test does not suggest that the guppy XY pair has stronger crossover localisation than the autosomes, or than the homologous chromosome in a closely related fish, the platyfish (Xiphophorus maculatus). We therefore conclude that the guppy XY pair has not recently undergone an evolutionary change to a different recombination pattern, or reduced its crossover rate, but that the guppy evolved Y-linkage due to acquiring a male-determining factor that also conferred the male crossover pattern. The results also identify the centromere ends of guppy chromosomes, which were not determined in the guppy genome assembly.
Python and r code files for intronic GC analyses in the chromosomes of 3 fish species, based on published and unpublished short-read genome sequences and annotated genes.
No other files are needed. The files include 2 files with scripts for the analysis, and the files with results after analyses.