Skip to main content
Dryad

TweetyNet results

Abstract

This dataset accompanies the eLife publication "Automated annotation of birdsong with a neural network that segments spectrograms". In the article, we describe and benchmark a neural network architecture, TweetyNet, that automates the annotation of birdsong as we describe in the text. Here we provide checkpoint files that contain the weights of trained TweetyNet models. The checkpoints we provide correspond to the models that obtained the lowest error rates on the benchmark datasets used (as reported in the Results section titled "TweetyNet annotates with low error rates across individuals and species"). We share these checkpoints to enable other researchers to replicate our key result, and to allow users of our software to leverage them, for example to improve performance on their data by adapting pre-trained models with transfer learning methods.