Skip to main content
Dryad

Explaining the divergence of population trajectories for two interacting waterfowl species

Data files

Nov 19, 2024 version files 115.43 MB

Abstract

Identifying the specific environmental features and associated density-dependent processes that limit population growth is central to both ecology and conservation. Comparative assessments of sympatric species allow for inference into how ecologically similar species differentially respond to their shared environment, which can be used to inform community-level conservation strategies. Comparative assessments can nevertheless be complicated by interactions and feedback loops among the species in question. We developed an integrated population model based on sixty-one years of ecological data describing the demographic histories of Canvasbacks (Aythya valisineria) and Redheads (Aythya americana), two species of migratory diving ducks that utilize similar breeding habitats and affect each other’s demography through interspecific nest parasitism. We combined this model with a transient life table response experiment to determine the extent that demographic rates, and their contributions to population growth, were similar between these two species. We found that demographic rates and, to a lesser extent, their contributions to population growth covaried between Canvasbacks and Redheads, but the trajectories of population abundances widely diverged between the two species during the end of the 20th century due to inherent differences between the species life-histories and sensitivities to both environmental variation and harvest pressure. We found that annual survival of both species increased during years of restrictive harvest regulations; however, recent harvest pressure on female Canvasbacks may be contributing to population declines. Despite periodic, and often dramatic, increases in breeding abundance during wet years, the number of breeding Canvasbacks declined by 13% whereas the number of breeding Redheads has increased by 37% since 1961. Reductions in harvest pressure and improvements in submerged aquatic vegetation throughout the wintering grounds have mediated the extent to which populations of both species contracted during dry years in the Prairie Pothole Region. However, continued degradation of breeding habitats through climate-related shifts in wetland hydrology and agricultural conversion of surrounding grassland habitats may have exceeded the capacity for demographic compensation during the non-breeding season.