Systematic review of vertebrate limb bone content
Data files
Jan 12, 2024 version files 153.90 KB
-
Dryad_submission_-_bone_review_(revised).xlsx
139.83 KB
-
README.md
14.07 KB
Abstract
This dataset shows a systematic review of the literature examining limb bone (femur, tibia, fibula, humerus, radius, ulna) characteristics in diverse vertebrates. These characteristics include ash content, percent phosphorus, bone mineral density, bone density, and bone mineral content (defined in dataset).
https://doi.org/10.5061/dryad.m0cfxpp94
Description of the data and file structure
This dataset consists of an excel spreadsheet with 6 sheets.
1. Sheet descriptions: describes what is in each of the other 4 sheets.
2. Metadata: describes the headings for the "core data" sheet.
3. Abbreviations
4. Types: describes the different bone measurements included in our dataset.
5. Core data: all bone measurements collected in our systematic review, along with the other data described in "metadata"
6. Accession numbers: citations for all data included in the dataset. Accession numbers are also included in "core data" so they can be matched easily.
Because of the nature of our dataset (several types of measurements, and no single data entry had every single one), there are many blanks in our dataset. They are filled as "NA."
Data sources
Actis, E. A., Mosconi, S., Jahn, G. A., & Superina, M. (2017). Reproductive implications of bone mineral density in an armadillo, the pichi (Zaedyus pichiy). Journal of Mammalogy, 98(5), 1400–1407. https://doi.org/10.1093/jmammal/gyx060
Amuno, S., Al Kaissi, A., Jamwal, A., Niyogi, S., & Quenneville, C. E. (2018). Chronic arsenicosis and cadmium exposure in wild snowshoe hares (Lepus americanus) breeding near Yellowknife, Northwest Territories (Canada), part 2: Manifestation of bone abnormalities and osteoporosis. Science of The Total Environment, 612, 1559–1567. https://doi.org/10.1016/j.scitotenv.2017.08.280
Azevedo, C. T., Lima, J. Y., De Azevedo, R. M., Santos Neto, E. B., Tamy, W. P., Barbosa, L. D. A., Brito, J. L., Boere, V., & Da Silveira, L. S. (2015). Thoracic limb bone development in Sotalia guianensis (Van Beneden 1864) along the coastline of Espírito Santo, Brazil. Journal of Mammalogy, 96(3), 541–551. https://doi.org/10.1093/jmammal/gyv059
Bertuccelli, T., Crosta, L., Costa, G. L., Schnitzer, P., Sawmy, S., & Spadola, F. (2021). Predisposing anatomical factors of humeral fractures in birds of prey: A preliminary tomographic comparative study. Journal of Avian Medicine and Surgery, 35(2). https://doi.org/10.1647/19-00006
Bjorå, R., Falch, J. A., Staaland, H., Nordsletten, L., & Gjengedal, E. (2001). Osteoporosis in the Norwegian moose. Bone, 29(1), 70–73. https://doi.org/10.1016/S8756-3282(01)00469-0
Bostwick, K. S., Riccio, M. L., & Humphries, J. M. (2012). Massive, solidified bone in the wing of a volant courting bird. Biology Letters, 8(5), 760–763. https://doi.org/10.1098/rsbl.2012.0382
Butti, C., Corain, L., Cozzi, B., Podestà, M., Pirone, A., Affronte, M., & Zotti, A. (2007). Age estimation in the Mediterranean bottlenose dolphin Tursiops truncatus (Montagu 1821) by bone density of the thoracic limb. Journal of Anatomy, 211(5), 639–646. https://doi.org/10.1111/j.1469-7580.2007.00805.x
Cantley, C. E. L., Firth, E. C., Delahunt, J. W., Pfeiffer, D. U., & Thompson, K. G. (1999). Naturally occurring osteoarthritis in the metacarpophalangeal joints of wild horses. Equine Veterinary Journal, 31(1), 73–81. https://doi.org/10.1111/j.2042-3306.1999.tb03794.x
Dirrigl, F. J., Dalsky, G. P., & Warner, S. E. (2004). Dual-energy X-ray absorptiometry of birds: An examination of excised skeletal specimens. Journal of Veterinary Medicine Series A, 51(6), 313–319. https://doi.org/10.1111/j.1439-0442.2004.00643.x
Dumont, E. R. (2010). Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society B: Biological Sciences, 277(1691), 2193–2198. https://doi.org/10.1098/rspb.2010.0117
Dzierzęcka, M., & Charuta, A. (2010). Influence of sex on bone mineral density and content of the skeleton of the thoracic and pelvic limb in the ostrich - Struthio camelus var. domesticus. Bulletin of The Veterinary Institute in Pulawy, 54, 601-604.
Eastman, J. T., Witmer, L. M., Ridgely, R. C., & Kuhn, K. L. (2014). Divergence in skeletal mass and bone morphology in antarctic notothenioid fishes: Notothenioid Skeletal Morphology. Journal of Morphology, 275(8), 841–861. https://doi.org/10.1002/jmor.20258
Edgren, R. A. (1960). A seasonal change in bone density in female musk turtles Sternothaerus odoratus (Latreille). Comparative Biochemistry and Physiology, 1, 213–217.
Elkin, D. C. (1995). Volume density of South American camelid skeletal parts. International Journal of Osteoarchaeology, 5(1), 29–37. https://doi.org/10.1002/oa.1390050104
Fish, F. E., & Stein, B. R. (1991). Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology, 110(6), 339–345. https://doi.org/10.1007/BF01668024
Frongia, G. N., Muzzeddu, M., Mereu, P., Leoni, G., Berlinguer, F., Zedda, M., Farina, V., Satta, V., Di Stefano, M., & Naitana, S. (2018). Structural features of cross-sectional wing bones in the griffon vulture (Gyps fulvus) as a prediction of flight style. Journal of Morphology, 279(12), 1753–1763. https://doi.org/10.1002/jmor.20893
Frongia, G. N., Naitana, S., Farina, V., Gadau, S. D., Stefano, M. D., Muzzeddu, M., Leoni, G., & Zedda, M. (2021). Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture ( gyps fulvus ) and greater flamingo ( phoenicopterus roseus ). Journal of Anatomy, 239(1), 59–69. https://doi.org/10.1111/joa.13411
Garriga, R. M., Sainsbury, A. W., & Goodship, A. E. (2004). Bone assessment of free-living red squirrels (Sciurus vulgaris) from the United Kingdom. Journal of Wildlife Diseases, 40(3), 515–522. https://doi.org/10.7589/0090-3558-40.3.515
Guglielmini, C., Zotti, A., Bernardini, D., Pietra, M., Podestá, M., & Cozzi, B. (2002). Bone density of the arm and forearm as an age indicator in specimens of stranded striped dolphins (Stenella coeruleoalba): Bone densitometry in the striped dolphin. The Anatomical Record, 267(3), 225–230. https://doi.org/10.1002/ar.10107
Gutiérrez, M. A., Kaufmann, C., González, M., Massigoge, A., & Álvarez, M. C. (2010). Intrataxonomic variability in metapodial and femur bone density related to age in guanaco (Lama guanicoe). Zooarchaeological and taphonomical implications. Journal of Archaeological Science, 37(12), 3226–3238. https://doi.org/10.1016/j.jas.2010.07.02
Heinrich, R. E., Ruff, C. B., & Adamczewski, J. Z. (1999). Ontogenetic changes in mineralization and bone geometry in the femur of muskoxen (Ovibos moschatus ). Journal of Zoology, 247(2), 215–223. https://doi.org/10.1111/j.1469-7998.1999.tb00985.x
Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19(3), 271–294. https://doi.org/10.1016/0305-4403(92)90017-W
Louis, L. D., Bowie, R. C. K., & Dudley, R. (2022). Wing and leg bone microstructure reflects migratory demands in resident and migrant populations of the Dark‐eyed Junco (Junco hyemalis). Ibis, 164(1), 132–150. https://doi.org/10.1111/ibi.13008
MacLatchy, L., & Müller, R. (2002). A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro-computed tomography (μCT). Journal of Human Evolution, 43(1), 89–105. https://doi.org/10.1006/jhev.2002.0559
Maffucci, F., Annona, G., Girolamo, P., Bologna, M. A., Meomartino, L., Montesano, A., Bentivegna, F., & Hochscheid, S. (2013). Bone density in the loggerhead turtle: Functional implications for stage specific aquatic habits. Journal of Zoology, 291(4), 243–248. https://doi.org/10.1111/jzo.12060
McGee-Lawrence, M. E., Wojda, S. J., Barlow, L. N., Drummer, T. D., Castillo, A. B., Kennedy, O., Condon, K. W., Auger, J., Black, H. L., Nelson, O. L., Robbins, C. T., & Donahue, S. W. (2009). Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone, 45(6), 1186–1191. https://doi.org/10.1016/j.bone.2009.08.011
Mitchell, G., Schalkwyk, O. L., & Skinner, J. D. (2005). The calcium and phosphorus content of giraffe (Giraffa camelopardalis) and buffalo (Syncerus caffer) skeletons. Journal of Zoology, 267(1), 55–61. https://doi.org/10.1017/S0952836905007247
Nieminen, P., Huitu, O., Henttonen, H., Finnilä, M. A. J., Voutilainen, L., Itämies, J., Kärjä, V., Saarela, S., Halonen, T., Aho, J., & Mustonen, A.-M. (2015). Physiological condition of bank voles (Myodes glareolus) during the increase and decline phases of the population cycle. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 141–149. https://doi.org/10.1016/j.cbpa.2015.05.007
Novecosky, B. J., & Popkin, P. R. W. (2005). Canidae volume bone mineral density values: An application to sites in western Canada. Journal of Archaeological Science, 32(11), 1677–1690. https://doi.org/10.1016/j.jas.2005.05.009
Plourde, S. P., Moreau, R., Letcher, R. J., & Verreault, J. (2013). Is the bone tissue of ring-billed gulls breeding in a pollution hotspot in the St. Lawrence River, Canada, impacted by halogenated flame retardant exposure? Chemosphere, 93(10), 2333–2340. https://doi.org/10.1016/j.chemosphere.2013.08.030
Powell, J. W. B., Duffield, D. A., Kaufman, J. J., & McFee, W. E. (2019). Bone density cannot accurately predict age in the common bottlenose dolphin, Tursiops truncatus. Marine Mammal Science, 35(4), 1597–1602. https://doi.org/10.1111/mms.12591
Rodríguez-Estival, J., Álvarez-Lloret, P., Rodríguez-Navarro, A. B., & Mateo, R. (2013). Chronic effects of lead (Pb) on bone properties in red deer and wild boar: Relationship with vitamins A and D3. Environmental Pollution, 174, 142–149. https://doi.org/10.1016/j.envpol.2012.11.019
Ryan, T. M., & Walker, A. (2010). Trabecular bone structure in the humeral and femoral heads of anthropoid primates. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 293(4), 719–729. https://doi.org/10.1002/ar.21139
Schalkwyk, O. L., Skinner, J. D., & Mitchell, G. (2004). A comparison of the bone density and morphology of giraffe (Giraffa camelopardalis) and buffalo (Syncerus caffer) skeletons. Journal of Zoology, 264(3), 307–315. https://doi.org/10.1017/S0952836904005795
Schmitz, A., Ondreka, N., Poleschinski, J., Fischer, D., Schmitz, H., Klein, A., Bleckmann, H., & Bruecker, C. (2018). The peregrine falcon’s rapid dive: On the adaptedness of the arm skeleton and shoulder girdle. Journal of Comparative Physiology A, 204(8), 747–759. https://doi.org/10.1007/s00359-018-1276-y
Shadwick, R. E., Goldbogen, J. A., Pyenson, N. D., & Whale, J. C. A. (2017). Structure and function in the lunge feeding apparatus: Mechanical properties of the fin whale mandible. The Anatomical Record, 300(11), 1953–1962. https://doi.org/10.1002/ar.23647
Skedros, J. G., Su, S. C., & Bloebaum, R. D. (1997). Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei. The Anatomical Record, 249(3), 297–316. https://doi.org/10.1002/(SICI)1097-0185(199711)249:3<297::AID-AR1>3.0.CO;2-S
Skedros, J. G., Sybrowsky, C. L., Parry, T. R., & Bloebaum, R. D. (2003). Regional differences in cortical bone organization and microdamage prevalence in Rocky Mountain mule deer. The Anatomical Record, 274A(1), 837–850. https://doi.org/10.1002/ar.a.10102
Stein, B. R. (1989). Bone density and adaptation in semiaquatic mammals. Journal of Mammalogy, 70(3), 467–476. https://doi.org/10.2307/1381418
Stevenson, K. T., Van Tets, I. G., & Chon, D. Y. (2009). Making no bones about it: Bone mineral density changes seasonally in a nonhibernating Alaskan rodent. Journal of Mammalogy, 90(1), 25–31. https://doi.org/10.1644/08-MAMM-A-012.1
Steyn, L., Hoffman, J., Bouwman, H., Maina, A. W., & Maina, J. N. (2018). Bone density and asymmetry are not related to DDT in House Sparrows: Insights from micro-focus X-ray computed tomography. Chemosphere, 212, 734–743. https://doi.org/10.1016/j.chemosphere.2018.08.119
Trotter, M., & Hixon, B. B. (1976). The density of long limb bones and the percentage ash weight of the skeleton of Macaca mulatta. American Journal of Physical Anthropology, 44(2), 223–232. https://doi.org/10.1002/ajpa.1330440203
Vera, M. C., Ferretti, J. L., Abdala, V., & Cointry, G. R. (2020). Biomechanical properties of anuran long bones: Correlations with locomotor modes and habitat use. Journal of Anatomy, 236(6), 1112–1125. https://doi.org/10.1111/joa.13161
Wall, W. P. (1983). The correlation between high limb-bone density and aquatic habits in recent mammals. Journal of Paleontology, 57(2), 197–207.
Wu, C., Wang, J., Li, P., Liu, G., Li, X., Ma, H., Wang, W., Wang, Z., Ge, C., & Gao, S. (2012). Bone mineral density and elemental composition of bone tissues in “red-boned” Guishan goats. Biological Trace Element Research, 149(3), 340–344. https://doi.org/10.1007/s12011-012-9442-5
Yin, R., Zhang, J., Xu, S., Kong, Y., Wang, H., & Gao, Y. (2022). Resistance to disuse-induced iron overload in Daurian ground squirrels (Spermophilus dauricus) during extended hibernation inactivity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110650. https://doi.org/10.1016/j.cbpb.2021.110650
Ytrehus, B., Skagemo, H., Stuve, G., Sivertsen, T., Handeland, K., & Vikøren, T. (1999). Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. Journal of Wildlife Diseases, 35(2), 204–211. https://doi.org/10.7589/0090-3558-35.2.204
We performed a systematic review to locate sources that measure bone in wild animals using one of the following metrics: total bone density, bone mineral density, and bone mineral content. To be included, papers had to (1) measure bone content in a wild or museum animal (we excluded experimental animals to remove human intervention as a confounding factor), (2) clearly state methodology and units, and (3) use only modern specimens (we excluded fossil animals because taphonomy affects bone). Although we read and assessed all relevant collected papers, we only extracted measurements from tetrapod limb bones (i.e. femur, tibia, fibula, humerus, radius, ulna). Limb bones were by far the most studied bones (for our search criteria) and focusing on them allowed us to compare similar bones across various taxa rather than looking at a limited dataset of more rarely studied bones. While this limited our scope and excluded fishes, this systematic review aimed not to comprehensively characterize bone content across species but to overview a subset of the vast variation found in bone.
We performed our literature search on January 20, 2022 on the Web of Science database, using the following search terms: TS = (bone mineral density OR bone density) NOT TS=(human* OR man OR woman OR women OR men OR athlet* OR dairy OR farm* OR poultry OR patient OR cancer OR child* OR girl* OR boy* OR menopaus* OR diabet* OR mouse OR mice OR metallurgy OR alloy*). We narrowed this search by removing human-centric topics and journals (e.g. kinesiology). This initial search resulted in 6586 papers. We scanned the titles of these papers to determine their relevance. Then, we read the abstracts of all potentially relevant papers and accepted or rejected them based on our criteria. Overall, we extracted 721 measures of bone content. We recorded sex, age group (fetus, neonate, juvenile, adult), and taxonomic information for each data point (where possible).