Metadata for the characterization of Platynereis dumerilii cephalic and non-cephalic sensory cell types
Data files
Aug 13, 2021 version files 54.69 MB
-
Figure_1_Figure_2_Figure_3_Figure_5_ropsin1_egfp_Reference_Transcriptome.fasta
34.60 MB
-
Figure_1_Figure_2_Figure_3_SmartSeq2_Experiment_1_HEAD_EP_TRUNK_TRE_Profiling_ReadCounts_Table.txt
1.39 MB
-
Figure_1_Figure_2_Figure_3_SmartSeq2_Experiment_1_HEAD_EP_TRUNK_TRE_Profiling_TPMs_Table.txt
1.97 MB
-
Figure_2_Figure_3_Pdu_vs_Dm_Orthology_Table.txt
209.57 KB
-
Figure_2_Figure_3_SmartSeq2_Experiment_1_DiffExpr_Analysis_EP_vs_HeadAndTrunk_FDRs_Table.txt
1.38 MB
-
Figure_2_Figure_3_SmartSeq2_Experiment_1_DiffExpr_Analysis_TRE_vs_HeadAndTrunk_FDRs_Table.txt
1.39 MB
-
Figure_2_SmartSeq2_Experiment_1_EP_and_TRE_Enriched_Genes.txt
876 B
-
Figure_2_SmartSeq2_Experiment_1_EP_Specific_Enriched_Genes.txt
923 B
-
Figure_2_SmartSeq2_Experiment_1_TRE_Specifc_Enriched_Genes.txt
1.48 KB
-
Figure_3_Dm_JohnstonOrgan_Enriched_GeneSymbols.txt
1.07 KB
-
Figure_3_Figure_Supplement_1_Dm_EP_Enriched_GeneSymbols.txt
5.12 KB
-
Figure_3_Mm_GO_0007605_GeneSymbols.txt
941 B
-
Figure_3_Mm_GO_0019233_GeneSymbols.txt
770 B
-
Figure_3_Mm_GO_0050951_GeneSymbols.txt
149 B
-
Figure_3_Mm_GO_0050954_GeneSymbols.txt
1.09 KB
-
Figure_3_Mm_GO_0050975_GeneSymbols.txt
30 B
-
Figure_3_Pdu_vs_Mm_Orthology_Table.txt
391.86 KB
-
Figure_3_SmartSeq2_Experiment_1_EP_and_TRE_Expressed_Genes.txt
5.73 KB
-
Figure_3_SmartSeq2_Experiment_1_EP_Specific_Expressed_Genes.txt
5.39 KB
-
Figure_3_SmartSeq2_Experiment_1_TRE_Specific_Expressed_Genes.txt
4.76 KB
-
Figure_5_A_Platynereis_r-opsin1_Gαq_luminescence_assay.xlsx.zip
11.36 KB
-
Figure_5_B_Platynereis_r-opsin1_relative_sensitivity.xlsx.zip
335.67 KB
-
Figure_5_Figure_Supplement_1_A_Platynereis_r-opsin1_Gαs_luminescence_assay.xlsx.zip
12.88 KB
-
Figure_5_Figure_Supplement_1_B_Platynereis_r-opsin1_Gαi_luminescence_assay.xlsx.zip
16.30 KB
-
Figure_5_Figure_Supplement_1_C_Whitelight_Arclamp_Spectrum.xlsx.zip
12.84 KB
-
Figure_5_Figure_Supplement_1_D_Monochromatic_light_BPfilters.xlsx.zip
36.53 KB
-
Figure_5_Figure_Supplement_1_E_Monochromatic_light_NDfilters.xlsx.zip
33.94 KB
-
Figure_6A_SmartSeq2_Experiment_2_DiffExpr_Analysis_Mut_EP_vs_WT_EP_FDRs_Table.txt
1.54 MB
-
Figure_6A_SmartSeq2_Experiment_2_DiffExpr_Analysis_Mut_TRE_vs_WT_TRE_FDRs_Table.txt
1.51 MB
-
Figure_6A_SmartSeq2_Experiment_2_rospin1_Mutant_vs_WT_Profiling_ReadCounts_Table.txt
2.59 MB
-
Figure_6A_SmartSeq2_Expreiment_2_ropsin1_Mutant_vs_WT_Profiling_TPMs_Table.txt
3.62 MB
-
Figure_6C_LightMeasurements_BrightBlueLight_RawData.ilt
41.19 KB
-
Figure_6C_LightMeasurements_CombinedData.xlsx.zip
54.08 KB
-
Figure_6C_LightMeasurements_DimWhiteLight_RawData.ilt
41.19 KB
-
Figure_6D_SmartSeq2_Experiment_3_BrightBlueLight_vs_DimWhiteLight_Trunks_ReadCounts_Table.txt
1.45 MB
-
Figure_6D_SmartSeq2_Experiment_3_BrightBlueLight_vs_DimWhiteLight_Trunks_TPMs_Table.txt
1.98 MB
-
Readme.xlsx.zip
48.70 KB
Abstract
Rhabdomeric Opsins (r-Opsins) serve as light-sensory molecules in cephalic eye photoreceptors of many invertebrates, but also play roles in additional sensory organs. This has prompted questions on the evolutionary relationship of the cell types, specifically if ancient r-Opsins cells possessed non-photosensory functions. By extracting and profiling cephalic and non-cephalic r-opsin1-expressing cell types of the marine bristleworm Platynereis dumerilii, we find evidence for shared and distinct identities between these two cell types. We establish that non-cephalic cells possess a mechanosensory signature, but also a full set of phototransduction components. Using cell-culture-based second messenger assays, we determine that Platynereis r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells in r-opsin1 mutant animals, and comparing cells under dim and bright light conditions reveals that in the non-cephalic cell type, light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We finally establish a supervised, deep learning-based quantitative behavioral analysis pipeline to assess animal trunk movements. We identify light-dependent differences in the fine-tuning of the worms’ undulatory movements in mutant vs. wildtype headless trunks, which are known to require mechanosensory feedback. Altogether, our results provide support for an evolutionary concept in which r-Opsins act as ancient, light-dependent modulators of mechanosensation. Our findings refine the reconstruction of sensory cell type evolution, and suggest that light-independent mechanosensory roles of r-Opsins likely result from secondary evolutionary processes.