Skip to main content
Dryad

Dollo meets Bergmann: Morphological evolution in secondary aquatic mammals

Data files

Nov 01, 2024 version files 472.68 KB

Abstract

Secondary transitions to aquatic environments are common among vertebrates, and aquatic lineages display several adaptations to this realm, some of which might make these transitions irreversible. At the same time, discussions about secondary transitions often focus only on the marine realm, comparing fully terrestrial with fully aquatic species. This, however, captures only a fraction of land-to-water transitions, and freshwater and semi-aquatic groups are often neglected in macroevolutionary studies. Here we use phylogenetic comparative methods to unravel the evolution of different levels of aquatic adaptations across all extant mammals, testing if aquatic adaptations are irreversible and if they are related to relative body mass changes. We found irreversible adaptations consistent with Dollo’s Law in lineages that rely strongly on aquatic environments, while weaker adaptations in semiaquatic lineages, which still allow efficient terrestrial movement, are reversible. In lineages transitioning to aquatic realms, including semiaquatic ones, we found a consistent trend toward an increased relative body mass and a significant association with a more carnivorous diet. We interpret these patterns as the result of thermoregulation constraints associated with the high thermal conductivity of water leading to a body mass increase consistent with Bergmann’s Rule and to a prevalence of more nutritious diets.