Skip to main content
Dryad

Data from: Artificial intelligence model for detecting duodenal endoscopic changes on images of functional dyspepsia

Data files

Apr 14, 2025 version files 47.20 MB

Abstract

Background: Recently, it has been suggested that the duodenum may be the pathological locus of functional dyspepsia (FD). Additionally, an image-based artificial intelligence (AI) model was shown to discriminate colonoscopy images of irritable bowel syndrome from healthy subjects with an area under the curve (AUC) 0.95.

Aim: To evaluate an AI model to distinguish duodenal images of FD patients from healthy subjects.

Methods: Duodenal images were collected from hospital records and labeled as "functional dyspepsia" or non-FD in electronic medical records. Helicobacter pylori (HP) infection status was obtained from the Japan Endoscopy Database. Google Cloud AutoML Vision was used to classify four groups: FD/HP current infection (n = 32), FD/HP uninfected (n = 35), non-FD/HP current infection (n = 39), and non-FD/HP uninfected (n = 33). Patients with organic diseases (e.g., cancer, ulcer, postoperative abdomen, reflux) and narrow-band or dye-spread images were excluded. Sensitivity, specificity, and AUC were calculated.

Results: In total, 484 images were randomly selected for FD/HP current infection, FD/HP uninfected, non-FD/current infection, and non-FD/HP uninfected. The overall AUC for the four groups was 0.47. The individual AUC values were as follows: FD/HP current infection (0.20), FD/HP uninfected (0.35), non-FD/current infection (0.46), and non-FD/HP uninfected (0.74). Next, using the same images, we constructed models to determine the presence or absence of FD in the HP-infected or uninfected patients. The model exhibited a sensitivity of 58.3%, specificity of 100%, positive predictive value of 100%, negative predictive value of 77.3%, and an AUC of 0.85 in HP uninfected patients.

Conclusion: We developed an image-based AI model to distinguish duodenal images of FD from healthy subjects, showing higher accuracy in HP-uninfected patients. These findings suggest AI-assisted endoscopic diagnosis of FD may be feasible.