Skip to main content
Dryad

Morphological diversity of the cetacean mandibular symphysis coincides with novel modes of aquatic feeding

Data files

Jul 11, 2025 version files 94.37 KB

Abstract

In whales, extreme modifications to the ancestral mammalian feeding apparatus facilitate novel modes of aquatic feeding. These modifications manifest in morphological diversity across a suite of characters, including the mandibular symphysis. Cetaceans span a range of symphyseal morphologies, with one lineage (crown mysticetes) evolving a highly mobile condition unique among mammals. Here, we use phylogenetic comparative methods to examine the evolution of symphyseal fusion and elongation across 206 extant and fossil cetacean taxa. Ancestral state reconstructions corroborate observations from the fossil record that suggest the ancestral condition for Cetacea was a fused, moderately elongated symphysis. Shifts in symphyseal morphology coincided with ocean restructuring and diversification of feeding modes. Evolutionary rates peaked in the middle-late Eocene and at the Eocene-Oligocene boundary as whales evolved shorter, unfused symphyses. During the Eocene, ankylosed mandibles became less common with the appearance of increasingly pelagic whales. Mysticetes evolved decoupled, highly mobile mandibles near the Eocene-Oligocene boundary. Several odontocete lineages underwent a trait reversal and converged on fully fused, elongated mandibles in the Miocene. Analyses evaluating the influence of ecological variables indicate strong correlations in feeding strategy, dentition, and prey type. The loss of prey-processing behavior and changes to masticatory loading regimes may explain concurrent trends in symphyseal morphology and tooth simplification. We suggest that the functional and morphological diversity of the symphysis in whales is a consequence of aquatic feeding imposing different mechanical constraints than those associated with feeding on land.