Data from: AgMate: an optimal mating software versus other mate pair designing methods on long-term breeding of Pinus taeda L
Data files
Jun 21, 2022 version files 13.13 MB
-
DE_Input_Cycle1.csv
24.94 KB
-
DE_Input_Cycle10.csv
333.44 KB
-
DE_Input_Cycle2.csv
56.31 KB
-
DE_Input_Cycle3.csv
87.27 KB
-
DE_Input_Cycle4.csv
121.06 KB
-
DE_Input_Cycle5.csv
155.72 KB
-
DE_Input_Cycle6.csv
191.36 KB
-
DE_Input_Cycle7.csv
226.92 KB
-
DE_Input_Cycle8.csv
262.47 KB
-
DE_Input_Cycle9.csv
297.96 KB
-
DE_Output_Cycle1.csv
36.21 KB
-
DE_Output_Cycle10.csv
61.28 KB
-
DE_Output_Cycle2.csv
36.54 KB
-
DE_Output_Cycle3.csv
46.93 KB
-
DE_Output_Cycle4.csv
56.68 KB
-
DE_Output_Cycle5.csv
60.33 KB
-
DE_Output_Cycle6.csv
60.33 KB
-
DE_Output_Cycle7.csv
60.42 KB
-
DE_Output_Cycle8.csv
60.35 KB
-
DE_Output_Cycle9.csv
60.36 KB
-
PAM_Input_Cycle1.csv
26.87 KB
-
PAM_Input_Cycle10.csv
346.26 KB
-
PAM_Input_Cycle2.csv
62.83 KB
-
PAM_Input_Cycle3.csv
97.48 KB
-
PAM_Input_Cycle4.csv
132.75 KB
-
PAM_Input_Cycle5.csv
168.27 KB
-
PAM_Input_Cycle6.csv
203.86 KB
-
PAM_Input_Cycle7.csv
239.46 KB
-
PAM_Input_Cycle8.csv
275.04 KB
-
PAM_Input_Cycle9.csv
310.63 KB
-
PAM_Output_Cycle1.csv
43.54 KB
-
PAM_Output_Cycle10.csv
89.87 KB
-
PAM_Output_Cycle2.csv
88.48 KB
-
PAM_Output_Cycle3.csv
93.10 KB
-
PAM_Output_Cycle4.csv
89.72 KB
-
PAM_Output_Cycle5.csv
89.80 KB
-
PAM_Output_Cycle6.csv
89.81 KB
-
PAM_Output_Cycle7.csv
89.78 KB
-
PAM_Output_Cycle8.csv
89.80 KB
-
PAM_Output_Cycle9.csv
89.82 KB
-
README.txt
1.73 KB
-
RM_Input_Cycle1.csv
24.94 KB
-
RM_Input_Cycle10.csv
367.33 KB
-
RM_Input_Cycle2.csv
60.85 KB
-
RM_Input_Cycle3.csv
97.39 KB
-
RM_Input_Cycle4.csv
135.98 KB
-
RM_Input_Cycle5.csv
174.52 KB
-
RM_Input_Cycle6.csv
213.08 KB
-
RM_Input_Cycle7.csv
251.61 KB
-
RM_Input_Cycle8.csv
290.19 KB
-
RM_Input_Cycle9.csv
328.76 KB
-
RM_Output_Cycle1.csv
38.17 KB
-
RM_Output_Cycle10.csv
61.44 KB
-
RM_Output_Cycle2.csv
39.51 KB
-
RM_Output_Cycle3.csv
43.82 KB
-
RM_Output_Cycle4.csv
52.24 KB
-
RM_Output_Cycle5.csv
59.86 KB
-
RM_Output_Cycle6.csv
60.42 KB
-
RM_Output_Cycle7.csv
60.44 KB
-
RM_Output_Cycle8.csv
60.42 KB
-
RM_Output_Cycle9.csv
60.45 KB
-
Sorted_Complete_Pedigree_DE_Cycle1.csv
22.21 KB
-
Sorted_Complete_Pedigree_DE_Cycle10.csv
396.20 KB
-
Sorted_Complete_Pedigree_DE_Cycle2.csv
47 KB
-
Sorted_Complete_Pedigree_DE_Cycle3.csv
72.30 KB
-
Sorted_Complete_Pedigree_DE_Cycle4.csv
108.85 KB
-
Sorted_Complete_Pedigree_DE_Cycle5.csv
154.19 KB
-
Sorted_Complete_Pedigree_DE_Cycle6.csv
202.63 KB
-
Sorted_Complete_Pedigree_DE_Cycle7.csv
251.02 KB
-
Sorted_Complete_Pedigree_DE_Cycle8.csv
299.46 KB
-
Sorted_Complete_Pedigree_DE_Cycle9.csv
347.82 KB
-
Sorted_Complete_Pedigree_PAM_Cycle1.csv
22.21 KB
-
Sorted_Complete_Pedigree_PAM_Cycle10.csv
379.64 KB
-
Sorted_Complete_Pedigree_PAM_Cycle2.csv
48.21 KB
-
Sorted_Complete_Pedigree_PAM_Cycle3.csv
76.85 KB
-
Sorted_Complete_Pedigree_PAM_Cycle4.csv
112.78 KB
-
Sorted_Complete_Pedigree_PAM_Cycle5.csv
153.44 KB
-
Sorted_Complete_Pedigree_PAM_Cycle6.csv
197.75 KB
-
Sorted_Complete_Pedigree_PAM_Cycle7.csv
243.20 KB
-
Sorted_Complete_Pedigree_PAM_Cycle8.csv
288.65 KB
-
Sorted_Complete_Pedigree_PAM_Cycle9.csv
334.14 KB
-
Sorted_Complete_Pedigree_RM_Cycle1.csv
22.21 KB
-
Sorted_Complete_Pedigree_RM_Cycle10.csv
390.50 KB
-
Sorted_Complete_Pedigree_RM_Cycle2.csv
48.45 KB
-
Sorted_Complete_Pedigree_RM_Cycle3.csv
76.08 KB
-
Sorted_Complete_Pedigree_RM_Cycle4.csv
108.14 KB
-
Sorted_Complete_Pedigree_RM_Cycle5.csv
148.73 KB
-
Sorted_Complete_Pedigree_RM_Cycle6.csv
196.64 KB
-
Sorted_Complete_Pedigree_RM_Cycle7.csv
245.09 KB
-
Sorted_Complete_Pedigree_RM_Cycle8.csv
293.57 KB
-
Sorted_Complete_Pedigree_RM_Cycle9.csv
342.02 KB
Abstract
Breeding objectives aim to optimize two crucial but contrasting goals of maximizing genetic gain while managing genetic diversity. In advanced generations, this becomes a challenge in monoecious conifer tree species breeding programs because they suffer from inbreeding. Developing an algorithm that maximizes genetic gain while maintaining genetic diversity for monoecious species is imperative. While methods and algorithms for animal breeding are well-established, an efficient algorithm suited to monoecious species remains elusive. Towards this goal, we have adopted an evolutionary genetic algorithm, the Differential Evolution algorithm, to optimize mate pair designing in Pinus taeda (loblolly pine), a widely planted pine species in the southern USA. AgMate, an optimal mating for monoecious species software, is a multi-functional, completely automated optimization software. It utilizes genetic relationships and breeding values as input to create an optimal mating list. AgMate maximizes the genetic gain and minimizes the increase in average coancestry and inbreeding in the proposed progeny. AgMate was more effective in optimizing mating lists than positive assortative mating and random mating in short-term and long-term settings. AgMate mating list resulted in an average 93% genetic gain each cycle for ten cycles while simultaneously minimizing the increase in coancestry to 0.086. The framework and methods adapted for Pinus taeda are also relevant to the breeding of other monoecious species.
Agmate, an R software that utilizes the Differential Evolution algorithm and Second-order Cone Programming for the optimization of mate pair decisions and contributions for monoecious diploid species like Pinus taeda was used to analyze the data.
AgMate is a multi-functional software able to
Process pedigree information
-
Complete and order pedigrees
-
Generate numerator relationship matrices
-
Optimize selection and contribution of candidates
-
Design optimal matings between candidates
-
Provide visualization of results
Detailed R code is available at https://github.com/khushigoda/AgMate.
The ShinyApp version is available here: https://khushigoda.shinyapps.io/AgMate/.