Data from: Evaluating culture-free targeted next-generation sequencing for diagnosing drug-resistant tuberculosis: A multicentre clinical study of two end-to-end commercial workflows
Abstract
Background: Drug-resistant tuberculosis remains a major obstacle in ending the global tuberculosis epidemic. Deployment of molecular tools for comprehensive drug resistance profiling is imperative for successful detection and characterisation of tuberculosis drug resistance. We aimed to assess the diagnostic accuracy of a new class of molecular diagnostics for drug-resistant tuberculosis.
Methods: We conducted a prospective, cross-sectional, multicentre clinical evaluation of the performance of two targeted next-generation sequencing (tNGS) assays for drug-resistant tuberculosis at reference laboratories in three countries (Georgia, India, and South Africa) to assess diagnostic accuracy and index test failure rates. Eligible participants were aged 18 years or older, with molecularly confirmed pulmonary tuberculosis, and at risk for rifampicin-resistant tuberculosis. Sensitivity and specificity for both tNGS index tests (GenoScreen Deeplex Myc-TB and Oxford Nanopore Technologies [ONT] Tuberculosis Drug Resistance Test) were calculated for rifampicin, isoniazid, fluoroquinolones (moxifloxacin, levofloxacin), second line-injectables (amikacin, kanamycin, capreomycin), pyrazinamide, bedaquiline, linezolid, clofazimine, ethambutol, and streptomycin against a composite reference standard of phenotypic drug susceptibility testing and whole-genome sequencing.
Findings: Between April 1, 2021, and June 30, 2022, 832 individuals were invited to participate in the study, of whom 720 were included in the final analysis (212, 376, and 132 participants in Georgia, India, and South Africa, respectively). Of 720 clinical sediment samples evaluated, 658 (91%) and 684 (95%) produced complete or partial results on the GenoScreen and ONT tNGS workflows, respectively, with 593 (96%) and 603 (98%) of 616 smear-positive samples producing tNGS sequence data. Both workflows had sensitivities and specificities of more than 95% for rifampicin and isoniazid, and high accuracy for fluoroquinolones (sensitivity approximately ≥94%) and second line-injectables (sensitivity 80%) compared with the composite reference standard. Importantly, these assays also detected mutations associated with resistance to critical new and repurposed drugs (bedaquiline, linezolid) not currently detectable by any other WHO-recommended rapid diagnostics on the market. We note that the current format of assays have low sensitivity (≤50%) for linezolid and more work on mutations associated with drug resistance is needed.
Interpretation: This multicentre evaluation demonstrates that culture-free tNGS can provide accurate sequencing results for detection and characterisation of drug resistance from Mycobacterium tuberculosis clinical sediment samples for timely, comprehensive profiling of drug-resistant tuberculosis.
https://doi.org/10.5061/dryad.dr7sqvb8m
Description of the data and file structure
Participants meeting eligibility criteria were asked to provide at least 6 mL sputum either in one or two samples collected on day 1 and day 2. Samples were homogenized, decontaminated, re-suspended in 4mL final volume for all downstream testing. MTB/RIF, acid-fast bacilli (AFB) smear, Hain MTBDRplus and MTBDRsl, Mycobacteria Growth Indicator Tube (MGIT) and Löwenstein–Jensen medium (LJ) culture were performed on the sediment for standard of care testing. MGIT pDST was performed for all culture-positive samples for RIF, INH, FQ (MFX, LFX), PZA, AMK, CAP, KAN, BDQ, LZD, CLF, STR, and EMB at WHO endorsed critical concentrations.
Files and variables
File: dryad.txt
Description:
Variables
- insdc_biosample_accession: Unique BioSample Accession ID linking to publicly available sequencing data at the INSDC
- antibiotic: antimicrobial drug tested
- dst_method: Culture Medium used to performed the phenotypic susceptibility testing
- critical_concentration: Concentration at which the antibiotic was tested, units ug/ml
- resistance_phenotype: Susceptible (S) or resistant (R) result
Access information
Other publicly accessible locations of the data: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1160005
Participants meeting eligibility criteria were asked to provide at least 6 mL sputum either in one or two samples collected on day 1 and day 2. Samples were homogenized, decontaminated, re-suspended in 4mL final volume for all downstream testing. MTB/RIF, acid-fast bacilli (AFB) smear, Hain MTBDRplus and MTBDRsl, Mycobacteria Growth Indicator Tube (MGIT) and Löwenstein–Jensen medium (LJ) culture were performed on the sediment for standard of care testing. MGIT pDST was performed for all culture-positive samples for RIF, INH, FQ (MFX, LFX), PZA, AMK, CAP, KAN, BDQ, LZD, CLF, STR, and EMB at WHO endorsed critical concentrations.