A basic ddRADseq two-enzyme protocol performs well in herbarium and silica-dried tissues across four genera
Data files
Apr 23, 2020 version files 58.16 GB
-
Appendix_S2.xlsx
147.41 KB
-
Appendix_S7.docx
17.73 KB
-
Appendix_S8.xlsx
13.03 KB
-
Appendix_S9.xlsx
15.83 KB
-
barcodesPool_Boechera.csv
591 B
-
barcodesPool_Draba_pyrad.csv
1.37 KB
-
barcodesPool_Ilex_pyrad.csv
1.33 KB
-
barcodesPool_Solidago.csv
624 B
-
Boechera12_bootsOnBest-1.tre
26 KB
-
Boechera12.nex
8.04 MB
-
Boechera24_bootsOnBest-1.tre
26.09 KB
-
Boechera24.nex
2.99 MB
-
Boechera4_bootsOnBest-1.tre
26.06 KB
-
Boechera4.nex
70.99 MB
-
Boechera48_bootsOnBest-1.tre
21.48 KB
-
Boechera48.nex
109.25 KB
-
Boechera6_bootsOnBest-1.tre
26.08 KB
-
Boechera6.nex
30.83 MB
-
demultiplexKansas_01.txt
3.88 KB
-
demultiplexKansas_02.txt
3.88 KB
-
demultiplexKansas_03.txt
3.88 KB
-
demultiplexKansas_1.txt
3.88 KB
-
demultiplexKansas_2.txt
3.88 KB
-
demultiplexKansas_3.txt
3.88 KB
-
demultiplexKansas_Boechera.txt
3.88 KB
-
demultiplexKansas_Boechera2.txt
3.88 KB
-
demultiplexKansas_Draba_nc.txt
4.02 KB
-
demultiplexKansas_Draba.txt
4.02 KB
-
demultiplexKansas_Ilex.txt
3.82 KB
-
demultiplexKansas_othertaxa.txt
3.87 KB
-
demultiplexKansas_Solidago.txt
3.88 KB
-
demultiplexKansas_Solidago1.txt
3.88 KB
-
demultiplexKansas_Solidago2.txt
3.88 KB
-
Draba12_bootsOnBest-1.tre
24.81 KB
-
Draba12_kepler.nex
5.39 MB
-
Draba24_bootsOnBest-1.tre
22.61 KB
-
Draba24_kepler.nex
154.09 KB
-
Draba4_bootsOnBest-1.tre
24.93 KB
-
Draba4_kepler.nex
103.75 MB
-
Draba6_bootsOnBest-1.tre
24.99 KB
-
Draba6_kepler.nex
37.98 MB
-
Ilex12_bootsOnBest-1.tre
17.45 KB
-
Ilex12_kepler.nex
8.71 MB
-
Ilex24_bootsOnBest-1.tre
16.68 KB
-
Ilex24_kepler.nex
1.46 MB
-
Ilex29_bootsOnBest-2.tre
11.13 KB
-
Ilex29_kepler2.nex
45.06 KB
-
Ilex4_bootsOnBest-1.tre
17.36 KB
-
Ilex4_kepler.nex
115.78 MB
-
Ilex6_bootsOnBest-1.tre
17.34 KB
-
Ilex6_kepler.nex
44.78 MB
-
Pool_Boechera_TGACCA_L001_R1_001.fastq.gz
6.78 GB
-
Pool_Boechera_TGACCA_L001_R2_001.fastq.gz
6.92 GB
-
Pool_Draba_CGATGT_L001_R1_001.fastq.gz
7.70 GB
-
Pool_Draba_CGATGT_L001_R2_001.fastq.gz
7.98 GB
-
Pool_Ilex_ATCACG_L002_R1_001.fastq.gz
6.82 GB
-
Pool_Ilex_ATCACG_L002_R2_001.fastq.gz
7.02 GB
-
Pool_Solidago_TTAGGC_L002_R1_001.fastq.gz
7.03 GB
-
Pool_Solidago_TTAGGC_L002_R2_001.fastq.gz
7.29 GB
-
pyrad234567_Kansas_Boechera12.txt
3.89 KB
-
pyrad234567_Kansas_Boechera24.txt
3.89 KB
-
pyrad234567_Kansas_Boechera4.txt
3.88 KB
-
pyrad234567_Kansas_Boechera48.txt
3.89 KB
-
pyrad234567_Kansas_Draba12_kepler.txt
3.80 KB
-
pyrad234567_Kansas_Draba24_kepler.txt
3.80 KB
-
pyrad234567_Kansas_Draba4_kepler.txt
3.79 KB
-
pyrad234567_Kansas_Draba4.txt
3.88 KB
-
pyrad234567_Kansas_Draba43_kepler.txt
3.80 KB
-
pyrad234567_Kansas_Draba43_kepler2.txt
3.80 KB
-
pyrad234567_Kansas_Draba6_kepler.txt
3.79 KB
-
pyrad234567_Kansas_DrabaPhylogeny.txt
3.89 KB
-
pyrad234567_Kansas_Ilex12_kepler.txt
3.79 KB
-
pyrad234567_Kansas_Ilex12.txt
3.88 KB
-
pyrad234567_Kansas_Ilex24_kepler.txt
3.79 KB
-
pyrad234567_Kansas_Ilex29_kepler.txt
3.80 KB
-
pyrad234567_Kansas_Ilex30.txt
3.88 KB
-
pyrad234567_Kansas_Ilex35.txt
3.88 KB
-
pyrad234567_Kansas_Ilex4_kepler.txt
3.79 KB
-
pyrad234567_Kansas_Ilex4.txt
3.88 KB
-
pyrad234567_Kansas_Ilex48.txt
3.88 KB
-
pyrad234567_Kansas_Ilex6_kepler.txt
3.79 KB
-
pyrad234567_Kansas_Ilex6.txt
3.88 KB
-
pyrad234567_Kansas_Solidago12.txt
3.90 KB
-
pyrad234567_Kansas_Solidago24.txt
3.90 KB
-
pyrad234567_Kansas_Solidago38.txt
3.90 KB
-
pyrad234567_Kansas_Solidago4.txt
3.90 KB
-
pyrad234567_Kansas_Solidago40.txt
3.90 KB
-
pyrad234567_Kansas_Solidago41.txt
3.90 KB
-
pyrad234567_Kansas_Solidago48.txt
3.90 KB
-
pyrad234567_Kansas_Solidago6.txt
3.90 KB
-
pyrad234567.txt
3.84 KB
-
Solidago12_badrmv_new_bootsOnBest-1.tre
22.22 KB
-
Solidago12_badrmv_new.nex
8.20 MB
-
Solidago24_badrmv_new_bootsOnBest-1.tre
21.95 KB
-
Solidago24_badrmv_new.nex
934.69 KB
-
Solidago4_badrmv_new_bootsOnBest-1.tre
22.16 KB
-
Solidago4_badrmv_new.nex
121.29 MB
-
Solidago6_badrmv_new_bootsOnBest-1.tre
22.14 KB
-
Solidago6_badrmv_new.nex
51.01 MB
Abstract
- Premise of the study: The ability to sequence genome-scale data from herbarium specimens would allow for the economical development of broad datasets with taxonomic and geographic sampling not otherwise possible. Here we evaluate the utility of a basic restriction site-associated DNA (ddRADseq) protocol with DNAs from four genera extracted from both silica-dried and herbarium tissue.
- Methods: DNAs from Draba, Boechera, Solidago, and Ilex were processed with a double-digest restriction-site associated DNA sequencing (ddRADseq) protocol. The effects of DNA degradation, taxon, and specimen age were assessed.
- Results: Although taxon, preservation method, and specimen age affected data recovery, large phylogenetically informative datasets were obtained from the majority of the samples.
- Discussion: These results suggest that herbarium samples can be incorporated into ddRADseq project designs, and that specimen age can be used as a rapid on-site guide for sample choice. The detailed protocol we provide will allow users to pursue herbarium-based RADseq projects that minimize expenses associated with fieldwork and sample evaluation.
- DNAs from Draba, Boechera, Solidago, and Ilex were processed with a double-digest restriction-site associated DNA sequencing (ddRADseq) protocol. The effects of DNA degradation, taxon, and specimen age were assessed. Raw data was processed with PyRAD, PEAR, R, and Garli on CIPRES.