Skip to main content
Dryad

Medical interview score data from PostCC-OSCE and programs for an extended many-facet IRT model

Data files

Jun 12, 2024 version files 11.71 KB

Abstract

Objective structured clinical examinations (OSCEs) are widely used performance assessments for medical and dental students. A common limitation of OSCEs is that the evaluation results depend on the characteristics of raters and the scoring rubric. To overcome this limitation, item response theory (IRT) models such as the many-facet models have been proposed to estimate examinee abilities while accounting for the characteristics of raters and evaluation items in a rubric. However, conventional IRT models have two impractical assumptions: constant rater severity across all evaluation items in a rubric and an equal interval rating scale among evaluation items, which can decrease model fitting and ability measurement accuracy.

To resolve this problem, we propose a new IRT model that relaxes these assumptions. We demonstrate the effectiveness of the proposed model by applying it to actual data collected from a medical interview test conducted at Tokyo Medical and Dental University as part of a post-clinical clerkship (PostCC) OSCE. The experimental results showed that the proposed model fit our OSCE data well and measured ability accurately. Furthermore, it provided abundant information on rater and item characteristics that conventional models cannot, helping us to better understand rater and item properties.

This dataset includes the actual score data collected from the above-mentioned medical interview test in a PostCC OSCE, as well as the program for estimating the parameters of the proposed IRT model.