Skip to main content
Dryad

Principles Governing Establishment versus Collapse of HIV-1 Cellular Spread

Data files

Nov 19, 2019 version files 309.02 MB

Abstract

A population at low census might go extinct, or instead transition into exponential growth to become firmly established. Whether this pivotal event occurs for a within-host pathogen can be the difference between health and illness. Here we define the principles governing whether HIV-1 spread among cells fails or becomes established, by coupling stochastic modeling with laboratory experiments. Following ex vivo activation of latently-infected CD4 T cells without de novo infection, stochastic cell division and death contributes to high variability in the magnitude of initial virus release. Transition to exponential HIV-1 spread often fails due to release of an insufficient amount of replication-competent virus. Establishment of exponential growth occurs when virus produced from multiple infected cells exceeds a critical population size. We quantitatively define the crucial transition to exponential viral spread. Thwarting this process would prevent HIV transmission or rebound from the latent reservoir.