Skip to main content
Dryad

Antigen-specific CD4+ T cells promote monocyte recruitment and differentiation into glycolytic lung macrophages to control Mycobacterium tuberculosis

Data files

Jul 17, 2025 version files 33.88 KB

Abstract

Although lung myeloid cells provide an intracellular niche for Mycobacterium tuberculosis (Mtb), CD4+ T cells limit Mtb growth in these cells to protect the host. The CD4+ T cell activities including interferon-γ (IFN-γ) production that account for this protection are poorly understood. Using intravenous antibody labeling and lineage-tracing reporter mice, we show that monocyte-derived macrophages (MDMs), rather than phenotypically similar monocytes or dendritic cells, are preferentially infected with Mtb in murine lungs. MDMs were recruited to the lungs by Mtb-specific CD4+ T cells via IFN-γ, which promoted the extravasation of monocyte precursors from the blood. It was possible that CD4+ T cells recruited infectable MDMs because these cells are uniquely poised to receive cognate MHCII-mediated help to control intracellular bacteria. Mice with MHCII deficiency in monocyte-derived cells had normal Mtb-specific CD4+ T cell activation, expansion and differentiation but the CD4+ T cells were unable to attenuate Mtb growth. Using single cell RNA sequencing, we showed that MDMs receiving cognate MHCII-mediated help from CD4+ T cells upregulated glycolytic genes associated with Mtb control. Overall, the results indicate that CD4+ T cells recruit infectable MDMs to the lungs then trigger glycolysis-dependent bacterial control in the MDMs by engaging their MHCII-bound Mtb peptides. Moreover, the results suggest that cognate MHCII-mediated help to promote MDM glycolysis is an essential, IFN-γ-independent effector function of Mtb-specific CD4+ T cells.