Data from: Determining ground-state phase diagrams on quantum computers via a generalized application of adiabatic state preparation
Data files
Apr 28, 2022 version files 1.65 MB
-
calibration_ibmq_casablanca_7122021_10.csv
2.01 KB
-
calibration_ibmq_montreal_7122021_10.csv
7.72 KB
-
calibration_ibmq_montreal_772021_10.csv
7.74 KB
-
calibration_ibmq_santiago_7182021_10.csv
1.49 KB
-
calibration_ibmq_santiago_9142021_10.csv
1.50 KB
-
calibration_ibmq_santiago_972021_10.csv
1.47 KB
-
Fig1_10siteevolution_Bx_0.05.dat
30.70 KB
-
Fig1_ExactmvsBz_L_10siteXY_J_1_Bzmax_5_Bzmin_-5steps_10000.dat
189.84 KB
-
Fig2a_Bz_L_2siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
1.90 KB
-
Fig2a_wnoBx_L_2siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
20.40 KB
-
Fig2a_wwithBx_L_2siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
20.40 KB
-
Fig2b_Bz_L_3siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
1.90 KB
-
Fig2b_wnoBx_L_3siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
40.80 KB
-
Fig2b_wwithBx_L_3siteXY_J_1_Bzmax_2_Bzmin_-2steps_200.dat
40.80 KB
-
Fig3a_ramplarge_L_2siteXY_J_1_Bzstart_1.0_Bzstop_-1.0steps_200.dat
4.03 KB
-
Fig3a_rampqc_L_2siteXY_J_1_Bzstart_1.0_Bzstop_-1.0steps_20.dat
386 B
-
Fig3b_ramplarge_L_3siteXY_J_1_Bzstart_2.0_Bzstop_-2.0steps_200.dat
3.90 KB
-
Fig3b_rampqc_L_3siteXY_J_1_Bzstart_2.0_Bzstop_-2.0steps_50.dat
937 B
-
Fig5_ExactmvsBz_L_2siteXY_J_1_Bzmax_5_Bzmin_-5steps_2000.dat
37.90 KB
-
Fig5a1_mvalues_2site_Bx_0.02santiago_optimisationlevel3.dat
900 B
-
Fig5a2_mvalues_2site_Bx_0.03santiago_optimisationlevel3.dat
902 B
-
Fig5a3_mvalues_2site_Bx_0.04santiago_optimisationlevel3.dat
901 B
-
Fig5a4_mvalues_2site_Bx_0.05santiago_optimisationlevel3.dat
900 B
-
Fig5b1_mvalues_2site_Bx_0.02santiago.dat
900 B
-
Fig5b2_mvalues_2site_Bx_0.03santiago.dat
902 B
-
Fig5b3_mvalues_2site_Bx_0.04santiago.dat
901 B
-
Fig5b4_mvalues_2site_Bx_0.05santiago.dat
900 B
-
Fig5c1_mvalues_2site_alldown_Bx_0.02santiago.dat
960 B
-
Fig5c2_mvalues_2site_alldown_Bx_0.03santiago.dat
958 B
-
Fig5c3_mvalues_2site_alldown_Bx_0.04santiago.dat
959 B
-
Fig5c4_mvalues_2site_alldown_Bx_0.05santiago.dat
959 B
-
Fig5d_mvalues_2site_alldown_Bx_0.02santiago_optimisationlevel3.dat
960 B
-
Fig5d_mvalues_2site_alldown_Bx_0.03santiago_optimisationlevel3.dat
957 B
-
Fig5d_mvalues_2site_alldown_Bx_0.04santiago_optimisationlevel3.dat
960 B
-
Fig5d_mvalues_2site_alldown_Bx_0.05santiago_optimisationlevel3.dat
959 B
-
Fig6_ExactmvsBz_L_3siteXY_J_1_Bzmax_2_Bzmin_-2steps_2000.dat
38 KB
-
Fig6a1_mvalues_3site_Bx_0.07Yorktown.dat
2.25 KB
-
Fig6a2_mvalues_3site_Bx_0.08Yorktown.dat
2.25 KB
-
Fig6a3_mvalues_3site_Bx_0.09Yorktown.dat
2.25 KB
-
Fig6a4_mvalues_3site_Bx_0.105Yorktown.dat
2.25 KB
-
Fig6b1_mvalues_3site_Bx_0.07Montreal.dat
2.25 KB
-
Fig6b2_mvalues_3site_Bx_0.08Montreal.dat
2.25 KB
-
Fig6b3_mvalues_3site_Bx_0.09Montreal.dat
2.25 KB
-
Fig6b4_mvalues_3site_Bx_0.105Montreal.dat
2.25 KB
-
Fig6c1_mvalues_3site_Bx_0.07Casablanca.dat
2.25 KB
-
Fig6c2_mvalues_3site_Bx_0.08Casablanca.dat
2.25 KB
-
Fig6c3_mvalues_3site_Bx_0.09Casablanca.dat
2.25 KB
-
Fig6c4_mvalues_3site_Bx_0.105Casablanca.dat
2.25 KB
-
Fig7a_2site_extrapolationfig_part1_combined.dat
162 B
-
Fig7a_2site_extrapolationfig_part2_combined.dat
144 B
-
Fig7a_2site_extrapolationfig_part3_combined.dat
4.51 KB
-
Fig7b_2site_alldown_extrapolationfig_part1_combined.dat
171 B
-
Fig7b_2site_alldown_extrapolationfig_part2_combined.dat
156 B
-
Fig7b_2site_alldown_extrapolationfig_part3_combined.dat
4.90 KB
-
Fig8_3site_extrapolationfig_part1_combined.dat
198 B
-
Fig8_3site_extrapolationfig_part2_combined.dat
180 B
-
Fig8_3site_extrapolationfig_part3_combined.dat
1.08 KB
-
qasmfiles.zip
1.12 MB
-
README.txt
18 KB
Abstract
Quantum phase transitions materialize as level crossings in the ground-state energy when the parameters of the Hamiltonian are varied. The resulting ground-state phase diagrams are straightforward to determine by exact diagonalization on classical computers, but are challenging on quantum computers because of the accuracy needed and the near degeneracy of competing states close to the level crossings. In this work, we use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution. This methodology is illustrated by examining the ground states of the XY model with a magnetic field in the z-direction in one dimension. We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
For the two sites, the quantum computer data is obtained from IBM Santiago after readout error correction. For the three sites, the quantum computer data is obtained from IBM Yorktown, IBM Montreal, IBM Casablanca after readout error correction. Other data is from computer simulations.