Skip to main content
Dryad

acusim: a synthetic dataset for cervicocranial acupuncture points localisation

Data files

Mar 28, 2025 version files 13.04 GB

Select up to 11 GB of files for download

Abstract

The locations of acupuncture points (acupoints) differ among human individuals due to variations in factors such as height, weight, and fat proportions. However, acupoint annotation is expert-dependent, labour-intensive, and highly expensive, which limits the data size and detection accuracy. In this paper, we introduce the "AcuSim" dataset as a new synthetic dataset for the task of localising points on the human cervicocranial area from an input image using an automatic render and labelling pipeline during acupuncture treatment. It includes the creation of 63,936 RGB-D images and 504 synthetic anatomical models with 174 volumetric acupoints annotated, to capture the variability and diversity of human anatomies. The study validates a convolutional neural network (CNN) on the proposed dataset with an accuracy of 99.73% and shows that 92.86% of predictions in the validation set align within a 5mm threshold of margin error when compared to expert-annotated data. This dataset addresses the limitations of prior datasets and can be applied to applications of acupoint detection and visualization, further advancing automation in Traditional Chinese Medicine (TCM).