Skip to main content
Dryad

Solid-state nuclear magnetic resonance data from: Covalent organic frameworks for carbon dioxide capture from air

Data files

Feb 06, 2023 version files 3.36 MB

Abstract

We report the first covalent incorporation of reactive aliphatic amine species into covalent organic frameworks (COFs). This was achieved through the crystallization of an imine-linked COF, termed COF-609-Im, followed by conversion of its imine linkage to base-stable tetrahydroquinoline linkage through aza-Diels-Alder cycloaddition, and finally, the covalent incorporation of tris(3-aminopropyl)amine into the framework. The obtained COF-609 exhibits a 1360-fold increase in CO2 uptake capacity compared to the pristine framework and a further 29% enhancement in the presence of humidity. We confirmed the chemistry of framework conversion and corroborated the enhanced CO2 uptake phenomenon with and without humidity through isotope-labeled Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. With this study, we established a new synthetic strategy to access a class of chemisorbents characterized by high affinity to CO2 in dilute sources, such as the air.