Dryad logo

Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plume in the Clarion Clipperton fracture zone (eastern-central Pacific)

Citation

Gillard, Benjamin et al. (2018), Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plume in the Clarion Clipperton fracture zone (eastern-central Pacific), v2, DataONE, Dataset, https://doi.org/10.15146/R3K966

Abstract

The anthropogenic impact of polymetallic nodule harvesting in the Clarion-Clipperton Fracture Zone is expected to strongly affect the benthic ecosystem. To predict the long-term, industrial-scale impact of nodule mining on the deep-sea environment and to improve the reliability of the sediment plume model, information about the specific characteristics of deep-sea particles is needed. Discharge simulations of mining-related fine-grained (median diameter ≈ 20 μm) sediment plumes at concentrations of 35–500 mg L–1 (dry weight) showed a propensity for rapid flocculation within 10 to 135 min, resulting in the formation of large aggregates up to 1100 μm in diameter. The results indicated that the discharge of elevated plume concentrations (500 mg L–1) under an increased shear rate (G ≥ 2.4 s–1) would result in improved efficiency of sediment flocculation. Furthermore, particle transport model results suggested that even under typical deep-sea flow conditions (G ≈ 0.1 s–1), rapid deposition of particles could be expected, which would restrict heavy sediment blanketing (several centimeters) to a smaller fall-out area near the source, unless subsequent flow events resuspended the sediments. Planning for in situ tests of these model projections is underway

Methods

Please refer to the main manuscript 

Usage Notes

Excell document with every sheet containing the raw data from one figure published with our manuscript.  

References