Skip to main content
Dryad

CNS isotope values in eye lenses for juvenile and adult Chinook Salmon

Abstract

Tracking habitat use and dietary shifts in migratory species is vital to conservation and management. Yet conventional animal tracking often precludes tracking small juveniles at critical life-stages where recruitment bottlenecks often manifest.

Stable isotope analysis (SIA) in consecutive laminae in eye lenses, a protein-rich depositional tissue, has emerged as a promising tool in fishes to develop long-term interpretive records of dietary histories using a single archival tissue. Currently, studies using fisheye lenses to study SIA in diets have primarily been conducted in marine environments using δ¹³C and δ¹⁵N to identify resource partitioning, ontogenetic shifts, and lifelong trophic histories. To date, no studies have examined freshwater taxa nor used δ³⁴S isotopes.

We placed juvenile Chinook Salmon (Oncorhynchus tshawytscha) in experimental enclosures in three different freshwater habitats (hatchery, river, and seasonal floodplain), each with isotopically distinct and well-characterized food webs. This experimental approach allowed us to directly measure diets and quantify tissue turn-over rates in eye lenses as well as the isotopic fractionation among fish tissues (fin and muscle tissue) in distinct habitat types using stable isotopes δ¹³C, ẟ¹⁵N, δ34S.

Bulk eye lens stable isotope measurements were analyzed for juvenile salmon lenses and were found to be consistent with the isotopic values of rearing habitats. Slight additional isotopic fractionation was only found in δ¹³C. We then successfully applied the method to a larger, reproductively mature adult salmon captured in freshwater and inferred juvenile habitat use.

SIA in eye lenses using three dietary isotopes (δ¹³C, ẟ¹⁵N, and δ34S), has significant potential for answering critical questions about migration, diet, foraging ecology, and life-history of migratory aquatic animals on Earth. Such information would have immediate application towards conservation management of diverse species and habitats at multiple scales.