Predicting the distribution of serotonergic axons: A supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model
Data files
May 01, 2023 version files 1.83 GB
-
011.dat
-
013.dat
-
015.dat
-
017.dat
-
019.dat
-
021.dat
-
023.dat
-
025.dat
-
027.dat
-
029.dat
-
031.dat
-
033.dat
-
035.dat
-
037.dat
-
039.dat
-
041.dat
-
043.dat
-
045.dat
-
047.dat
-
049.dat
-
051.dat
-
053.dat
-
055.dat
-
057.dat
-
059.dat
-
061.dat
-
063.dat
-
065.dat
-
067.dat
-
069.dat
-
071.dat
-
073.dat
-
075.dat
-
077.dat
-
079.dat
-
081.dat
-
083.dat
-
085.dat
-
087.dat
-
089.dat
-
091.dat
-
093.dat
-
095.dat
-
097.dat
-
099.dat
-
101.dat
-
103.dat
-
105.dat
-
107.dat
-
109.dat
-
111.dat
-
113.dat
-
115.dat
-
117.dat
-
119.dat
-
121.dat
-
123.dat
-
125.dat
-
127.dat
-
129.dat
-
131.dat
-
133.dat
-
135.dat
-
137.dat
-
139.dat
-
141.dat
-
143.dat
-
145.dat
-
147.dat
-
149.dat
-
151.dat
-
153.dat
-
155.dat
-
157.dat
-
159.dat
-
161.dat
-
163.dat
-
165.dat
-
167.dat
-
169.dat
-
171.dat
-
173.dat
-
175.dat
-
177.dat
-
179.dat
-
181.dat
-
183.dat
-
185.dat
-
187.dat
-
189.dat
-
191.dat
-
193.dat
-
195.dat
-
197.dat
-
199.dat
-
201.dat
-
203.dat
-
205.dat
-
207.dat
-
209.dat
-
211.dat
-
213.dat
-
215.dat
-
217.dat
-
219.dat
-
221.dat
-
223.dat
-
225.dat
-
227.dat
-
229.dat
-
231.dat
-
233.dat
-
235.dat
-
237.dat
-
239.dat
-
241.dat
-
243.dat
-
245.dat
-
247.dat
-
249.dat
-
251.dat
-
253.dat
-
255.dat
-
257.dat
-
259.dat
-
261.dat
-
263.dat
-
265.dat
-
267.dat
-
269.dat
-
271.dat
-
273.dat
-
275.dat
-
277.dat
-
279.dat
-
281.dat
-
283.dat
-
285.dat
-
287.dat
-
289.dat
-
291.dat
-
293.dat
-
295.dat
-
297.dat
-
299.dat
-
301.dat
-
303.dat
-
305.dat
-
307.dat
-
309.dat
-
311.dat
-
313.dat
-
315.dat
-
317.dat
-
319.dat
-
321.dat
-
323.dat
-
325.dat
-
327.dat
-
329.dat
-
331.dat
-
333.dat
-
335.dat
-
337.dat
-
339.dat
-
341.dat
-
343.dat
-
345.dat
-
347.dat
-
349.dat
-
351.dat
-
353.dat
-
355.dat
-
357.dat
-
359.dat
-
361.dat
-
363.dat
-
365.dat
-
367.dat
-
369.dat
-
371.dat
-
373.dat
-
375.dat
-
377.dat
-
379.dat
-
381.dat
-
383.dat
-
385.dat
-
387.dat
-
389.dat
-
391.dat
-
393.dat
-
395.dat
-
397.dat
-
399.dat
-
401.dat
-
403.dat
-
405.dat
-
407.dat
-
409.dat
-
411.dat
-
413.dat
-
415.dat
-
417.dat
-
419.dat
-
421.dat
-
423.dat
-
425.dat
-
427.dat
-
429.dat
-
431.dat
-
433.dat
-
435.dat
-
437.dat
-
439.dat
-
441.dat
-
443.dat
-
445.dat
-
447.dat
-
449.dat
-
451.dat
-
453.dat
-
455.dat
-
457.dat
-
459.dat
-
461.dat
-
463.dat
-
465.dat
-
467.dat
-
469.dat
-
471.dat
-
473.dat
-
475.dat
-
477.dat
-
479.dat
-
481.dat
-
483.dat
-
485.dat
-
487.dat
-
489.dat
-
491.dat
-
493.dat
-
495.dat
-
497.dat
-
499.dat
-
501.dat
-
503.dat
-
505.dat
-
507.dat
-
509.dat
-
511.dat
-
513.dat
-
515.dat
-
517.dat
-
519.dat
-
521.dat
-
523.dat
-
525.dat
-
527.dat
-
529.dat
-
531.dat
-
533.dat
-
535.dat
-
537.dat
-
539.dat
-
541.dat
-
543.dat
-
545.dat
-
547.dat
-
549.dat
-
551.dat
-
553.dat
-
555.dat
-
557.dat
-
559.dat
-
561.dat
-
563.dat
-
565.dat
-
567.dat
-
569.dat
-
571.dat
-
573.dat
-
575.dat
-
577.dat
-
579.dat
-
581.dat
-
583.dat
-
585.dat
-
587.dat
-
589.dat
-
591.dat
-
593.dat
-
595.dat
-
597.dat
-
599.dat
-
601.dat
-
README.md
May 16, 2023 version files 1.83 GB
-
011.dat
-
013.dat
-
015.dat
-
017.dat
-
019.dat
-
021.dat
-
023.dat
-
025.dat
-
027.dat
-
029.dat
-
031.dat
-
033.dat
-
035.dat
-
037.dat
-
039.dat
-
041.dat
-
043.dat
-
045.dat
-
047.dat
-
049.dat
-
051.dat
-
053.dat
-
055.dat
-
057.dat
-
059.dat
-
061.dat
-
063.dat
-
065.dat
-
067.dat
-
069.dat
-
071.dat
-
073.dat
-
075.dat
-
077.dat
-
079.dat
-
081.dat
-
083.dat
-
085.dat
-
087.dat
-
089.dat
-
091.dat
-
093.dat
-
095.dat
-
097.dat
-
099.dat
-
101.dat
-
103.dat
-
105.dat
-
107.dat
-
109.dat
-
111.dat
-
113.dat
-
115.dat
-
117.dat
-
119.dat
-
121.dat
-
123.dat
-
125.dat
-
127.dat
-
129.dat
-
131.dat
-
133.dat
-
135.dat
-
137.dat
-
139.dat
-
141.dat
-
143.dat
-
145.dat
-
147.dat
-
149.dat
-
151.dat
-
153.dat
-
155.dat
-
157.dat
-
159.dat
-
161.dat
-
163.dat
-
165.dat
-
167.dat
-
169.dat
-
171.dat
-
173.dat
-
175.dat
-
177.dat
-
179.dat
-
181.dat
-
183.dat
-
185.dat
-
187.dat
-
189.dat
-
191.dat
-
193.dat
-
195.dat
-
197.dat
-
199.dat
-
201.dat
-
203.dat
-
205.dat
-
207.dat
-
209.dat
-
211.dat
-
213.dat
-
215.dat
-
217.dat
-
219.dat
-
221.dat
-
223.dat
-
225.dat
-
227.dat
-
229.dat
-
231.dat
-
233.dat
-
235.dat
-
237.dat
-
239.dat
-
241.dat
-
243.dat
-
245.dat
-
247.dat
-
249.dat
-
251.dat
-
253.dat
-
255.dat
-
257.dat
-
259.dat
-
261.dat
-
263.dat
-
265.dat
-
267.dat
-
269.dat
-
271.dat
-
273.dat
-
275.dat
-
277.dat
-
279.dat
-
281.dat
-
283.dat
-
285.dat
-
287.dat
-
289.dat
-
291.dat
-
293.dat
-
295.dat
-
297.dat
-
299.dat
-
301.dat
-
303.dat
-
305.dat
-
307.dat
-
309.dat
-
311.dat
-
313.dat
-
315.dat
-
317.dat
-
319.dat
-
321.dat
-
323.dat
-
325.dat
-
327.dat
-
329.dat
-
331.dat
-
333.dat
-
335.dat
-
337.dat
-
339.dat
-
341.dat
-
343.dat
-
345.dat
-
347.dat
-
349.dat
-
351.dat
-
353.dat
-
355.dat
-
357.dat
-
359.dat
-
361.dat
-
363.dat
-
365.dat
-
367.dat
-
369.dat
-
371.dat
-
373.dat
-
375.dat
-
377.dat
-
379.dat
-
381.dat
-
383.dat
-
385.dat
-
387.dat
-
389.dat
-
391.dat
-
393.dat
-
395.dat
-
397.dat
-
399.dat
-
401.dat
-
403.dat
-
405.dat
-
407.dat
-
409.dat
-
411.dat
-
413.dat
-
415.dat
-
417.dat
-
419.dat
-
421.dat
-
423.dat
-
425.dat
-
427.dat
-
429.dat
-
431.dat
-
433.dat
-
435.dat
-
437.dat
-
439.dat
-
441.dat
-
443.dat
-
445.dat
-
447.dat
-
449.dat
-
451.dat
-
453.dat
-
455.dat
-
457.dat
-
459.dat
-
461.dat
-
463.dat
-
465.dat
-
467.dat
-
469.dat
-
471.dat
-
473.dat
-
475.dat
-
477.dat
-
479.dat
-
481.dat
-
483.dat
-
485.dat
-
487.dat
-
489.dat
-
491.dat
-
493.dat
-
495.dat
-
497.dat
-
499.dat
-
501.dat
-
503.dat
-
505.dat
-
507.dat
-
509.dat
-
511.dat
-
513.dat
-
515.dat
-
517.dat
-
519.dat
-
521.dat
-
523.dat
-
525.dat
-
527.dat
-
529.dat
-
531.dat
-
533.dat
-
535.dat
-
537.dat
-
539.dat
-
541.dat
-
543.dat
-
545.dat
-
547.dat
-
549.dat
-
551.dat
-
553.dat
-
555.dat
-
557.dat
-
559.dat
-
561.dat
-
563.dat
-
565.dat
-
567.dat
-
569.dat
-
571.dat
-
573.dat
-
575.dat
-
577.dat
-
579.dat
-
581.dat
-
583.dat
-
585.dat
-
587.dat
-
589.dat
-
591.dat
-
593.dat
-
595.dat
-
597.dat
-
599.dat
-
601.dat
-
README.md
Abstract
The self-organization of the brain matrix of serotonergic axons (fibers) remains an unsolved problem in neuroscience. The regional densities of this matrix have major implications for neuroplasticity, tissue regeneration, and the understanding of mental disorders, but the trajectories of its fibers are strongly stochastic and require novel conceptual and analytical approaches. In a major extension to our previous studies, we used a supercomputing simulation to model around one thousand serotonergic fibers as paths of superdiffusive fractional Brownian motion (FBM), a continuous-time stochastic process. The fibers produced long walks in a complex, three-dimensional shape based on the mouse brain and reflected at the outer (pial) and inner (ventricular) boundaries. The resultant regional densities were compared to the actual fiber densities in the corresponding neuroanatomically-defined regions. The relative densities showed strong qualitative similarities in the forebrain and midbrain, demonstrating the predictive potential of stochastic modeling in this system. The current simulation does not respect tissue heterogeneities but can be further improved with novel models of multifractional FBM. The study demonstrates that serotonergic fiber densities can be strongly influenced by the geometry of the brain, with implications for brain development, plasticity, and evolution.
Methods
See the Methods section of the published article (Janusonis S., Haiman J.H., Metzler R., Vojta T. (2023) Predicting the distribution of serotonergic axons: A supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model. Frontiers in Computational Neuroscience 17: 1189853).
Usage notes
The density files can be opened with any text editor. They can be converted to heatmaps with the included reader written in Wolfram Mathematica 13.2.