Skip to main content
Dryad

Microclimate-driven trends in spring-emergence phenology in a temperate reptile (Vipera berus): Evidence for a potential 'climate trap'?

Data files

Apr 28, 2022 version files 1.98 MB

Abstract

Climate change will increase the exposure of organisms to higher temperatures, but can also drive phenological shifts that alter their susceptibility to conditions at the onset of breeding cycles. Organisms rely on climatic cues to time annual life-cycle events, but the extent to which climate change has altered cue reliability remains unclear. Here, we examine the risk of a ‘climate trap’ – a climatically-driven desynchronisation of the cues that determine life-cycle events and fitness later in the season in a temperate reptile, the European adder (Vipera berus). During the winter, adders hibernate underground, buffered against sub-zero temperatures, and re-emerge in the spring to reproduce. We derived annual spring-emergence trends between 1983 and 2017 from historical observations in Cornwall, United Kingdom, and related these trends to the microclimatic conditions that adders experienced. Using a mechanistic microclimate model, estimates of below- and near-ground temperatures were used to derive accumulated degree-hour and absolute temperature thresholds that predicted annual spring-emergence timing. Trends in annual emergence timing and subsequent exposure to ground frost were then quantified. We found that adders have advanced their phenology towards earlier emergence. Earlier emergence was associated with increased exposure to ground frost and, contradicting the expected effects of macroclimate warming, increased post-emergence exposure to ground frost at some locations. The susceptibility of adders to this ‘climate trap’ was related to the rate at which frost risk diminishes relative to advancement in phenology, which depends on the seasonality of climate. We emphasise the need to consider exposure to changing microclimatic conditions when forecasting biological impacts of climate change.