Skip to main content
Dryad

Data for: Fungal parasitism on diatoms alters formation and bio–physical properties of sinking aggregates: Particle analyses

Data files

Jan 11, 2023 version files 32.91 GB

Abstract

Phytoplankton forms the base of aquatic food webs and element cycling in diverse aquatic systems. The fate of phytoplankton-derived organic matter, however, often remains unresolved as it is controlled by complex, interlinked remineralization and sedimentation processes. We here investigate a rarely considered control mechanism on sinking organic matter fluxes: fungal parasites infecting phytoplankton. We demonstrate that bacterial colonization was promoted 3.5-fold on fungal-infected phytoplankton cells in comparison to non-infected cells in a cultured model pathosystem (diatom Synedra, fungal microparasite Zygophlyctis, and co-growing bacteria), and even ≥17-fold in field-sampled populations (Planktothrix, Synedra, and Fragilaria). The SynedraZygophlyctis model system further revealed that fungal infections reduced the formation of aggregates. Moreover, carbon respiration was 2-fold higher and settling velocities 11–48% lower for similar-sized fungal-infected vs non-infected aggregates. Our data imply that parasites can effectively control the fate of phytoplankton-derived organic matter on a single-cell to single-aggregate scale, potentially enhancing remineralization and reducing sedimentation in freshwater and coastal systems.