Dryad logo

Data from: Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria

Citation

Nyboer, Elizabeth A.; Chapman, Lauren J. (2017), Data from: Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria, Dryad, Dataset, https://doi.org/10.5061/dryad.2s590

Abstract

Increasing water temperatures due to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch (Lates niloticus), a commercially-harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CTmax) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CTmax increased with acclimation temperature, however 3-week acclimated fish had higher overall CTmax than acutely-exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range, however acclimated Nile perch had lower AS compared to acutely-exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental due to limitations in AS.

Usage Notes

References

Location

Uganda
Lake Victoria