Data from: Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway
Data files
Aug 01, 2024 version files 433.66 MB
-
bilayer_vOECT_Data.zip
433.66 MB
-
README.md
979 B
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device’s on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
README: Tunable Anti-Ambipolar Vertical Bilayer Organic Electrochemical Transistor enable Neuromorphic Retinal Pathway
https://doi.org/10.5061/dryad.44j0zpcpj
In this dataset, we have incorporated the raw data collected during experiments forming the basis of all figures and experiments. The data was collected on Kiethey 26xx's using the open source software SweepMe! as described in the methods section of the work.
Description of the data and file structure
The dataset is available in txt file formats for each figure. The experimental conditions are detailed within the file name, as exampled by "1_BBL_PEDOT_var2_vOECT_25um_D1_Chip4_First_Cycle_ID1-1.txt", which involves the data collected from a BBL/PEDOT vOECT device with a W of 25um on chip 4. Alternatively, the data underlying each panel of figure can be found under the subsequent folder for the figure with txt files for each panel.
Sharing/Access information
n/a