Skip to main content
Dryad logo

Data from: Phylogeny, palaeontology, and primates: do incomplete fossils bias the tree of life?

Citation

Pattinson, David J.; Thompson, Richard S.; Piotrowski, Aleks K.; Asher, Robert J. (2014), Data from: Phylogeny, palaeontology, and primates: do incomplete fossils bias the tree of life?, v2, Dryad, Dataset, https://doi.org/10.5061/dryad.4g42q

Abstract

Paleontological systematics relies heavily on morphological data that have undergone decay and fossilization. Here, we apply a heuristic means to assess how a fossil's incompleteness detracts from inferring its phylogenetic relationships. We compiled a phylogenetic matrix for primates and simulated the extinction of living species by deleting an extant taxon's molecular data and keeping only those morphological characters present in actual fossils. The choice of characters present in a given living taxon (the subject) was defined by those present in a given fossil (the template). By measuring congruence between a well-corroborated phylogeny to those incorporating artificial fossils, and by comparing real vs. random character distributions and states, we tested the information content of paleontological datasets and determined if extinction of a living species leads to bias in phylogeny reconstruction. We found a positive correlation between fossil completeness and topological congruence. Real fossil templates sampled for 36 or more of the 360 available morphological characters (including dental) performed significantly better than similarly complete templates with random states. Templates dominated by only one partition performed worse than templates with randomly sampled characters across partitions. The template based on the Eocene primate Darwinius masillae performs better than most other templates with a similar number of sampled characters, likely due to preservation of data across multiple partitions. Our results support the interpretation that Darwinius is strepsirhine, not haplorhine, and suggest that paleontological datasets are reliable in primate phylogeny reconstruction.

Usage Notes

References