Skip to main content
Dryad

Miniaturized spectral sensing with a tunable optoelectronic interface

Data files

Dec 31, 2024 version files 960.36 KB

Abstract

Reconstructive optoelectronic spectroscopy has generated significant interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank-deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5μm×5μm. We report narrow-band spectral sensing with peak accuracies of ∼0.19 nm in free space and ∼2.45 nm on-chip. Additionally, we implement broadband complex spectral sensing for material identification, applicable to organic dyes, metals, semiconductors, and dielectrics. This work advances high-performance, miniaturized optical spectroscopy for both free-space and on-chip applications, offering cost-effective solutions, broad applicability, and scalable manufacturing.