Data from: Statistical context dictates the relationship between feedback-related EEG signals and learning
Data files
Aug 21, 2019 version files 20.14 GB
-
201_Cannon_FILT_altLow_STIM.mat.zip
-
203_Cannon_FILT_altLow_STIM.mat.zip
-
204_Cannon_FILT_altLow_STIM.mat.zip
-
205_Cannon_FILT_altLow_STIM.mat.zip
-
206_Cannon_FILT_altLow_STIM.mat.zip
-
207_Cannon_FILT_altLow_STIM.mat.zip
-
210_Cannon_FILT_altLow_STIM.mat.zip
-
211_Cannon_FILT_altLow_STIM.mat.zip
-
212_Cannon_FILT_altLow_STIM.mat.zip
-
213_Cannon_FILT_altLow_STIM.mat.zip
-
214_Cannon_FILT_altLow_STIM.mat.zip
-
215_Cannon_FILT_altLow_STIM.mat.zip
-
216_Cannon_FILT_altLow_STIM.mat.zip
-
229_Cannon_FILT_altLow_STIM.mat.zip
-
233_Cannon_FILT_altLow_STIM.mat.zip
-
234_Cannon_FILT_altLow_STIM.mat.zip
-
235_Cannon_FILT_altLow_STIM.mat.zip
-
236_Cannon_FILT_altLow_STIM.mat.zip
-
237_Cannon_FILT_altLow_STIM.mat.zip
-
238_Cannon_FILT_altLow_STIM.mat.zip
-
247_Cannon_FILT_altLow_STIM.mat.zip
-
249_Cannon_FILT_altLow_STIM.mat.zip
-
251_Cannon_FILT_altLow_STIM.mat.zip
-
262_Cannon_FILT_altLow_STIM.mat.zip
-
264_Cannon_FILT_altLow_STIM.mat.zip
-
269_Cannon_FILT_altLow_STIM.mat.zip
-
273_Cannon_FILT_altLow_STIM.mat.zip
-
274_Cannon_FILT_altLow_STIM.mat.zip
-
276_Cannon_FILT_altLow_STIM.mat.zip
-
277_Cannon_FILT_altLow_STIM.mat.zip
-
278_Cannon_FILT_altLow_STIM.mat.zip
-
333_Cannon_FILT_altLow_STIM.mat.zip
-
335_Cannon_FILT_altLow_STIM.mat.zip
-
337_Cannon_FILT_altLow_STIM.mat.zip
-
338_Cannon_FILT_altLow_STIM.mat.zip
-
339_Cannon_FILT_altLow_STIM.mat.zip
-
341_Cannon_FILT_altLow_STIM.mat.zip
-
342_Cannon_FILT_altLow_STIM.mat.zip
-
343_Cannon_FILT_altLow_STIM.mat.zip
-
cannonBehavData_forDryad.zip
-
README_for_201_Cannon_FILT_altLow_STIM.mat.txt
Abstract
Learning should be adjusted according to the surprise associated with observed outcomes but calibrated according to statistical context. For example, when occasional changepoints are expected, surprising outcomes should be weighted heavily to speed learning. In contrast, when uninformative outliers are expected to occur occasionally, surprising outcomes should be less influential. Here we dissociate surprising outcomes from the degree to which they demand learning using a predictive inference task and computational modeling. We show that the P300, a stimulus-locked electrophysiological response previously associated with adjustments in learning behavior, does so conditionally on the source of surprise. Larger P300 signals predicted greater learning in a changing context, but less learning in a context where surprise indicated a one-off outlier (oddball). Our results suggest that the P300 provides a surprise signal that is interpreted by downstream learning processes differentially according to statistical context in order to appropriately calibrate learning across complex environments.