Data from: Statistical context dictates the relationship between feedback-related EEG signals and learning
Data files
Aug 21, 2019 version files 20.14 GB
-
201_Cannon_FILT_altLow_STIM.mat.zip
489.12 MB
-
203_Cannon_FILT_altLow_STIM.mat.zip
418.57 MB
-
204_Cannon_FILT_altLow_STIM.mat.zip
550.05 MB
-
205_Cannon_FILT_altLow_STIM.mat.zip
394.35 MB
-
206_Cannon_FILT_altLow_STIM.mat.zip
549.50 MB
-
207_Cannon_FILT_altLow_STIM.mat.zip
585.64 MB
-
210_Cannon_FILT_altLow_STIM.mat.zip
572.82 MB
-
211_Cannon_FILT_altLow_STIM.mat.zip
571.44 MB
-
212_Cannon_FILT_altLow_STIM.mat.zip
576.34 MB
-
213_Cannon_FILT_altLow_STIM.mat.zip
499.97 MB
-
214_Cannon_FILT_altLow_STIM.mat.zip
454.55 MB
-
215_Cannon_FILT_altLow_STIM.mat.zip
559.61 MB
-
216_Cannon_FILT_altLow_STIM.mat.zip
446.89 MB
-
229_Cannon_FILT_altLow_STIM.mat.zip
438.85 MB
-
233_Cannon_FILT_altLow_STIM.mat.zip
533.01 MB
-
234_Cannon_FILT_altLow_STIM.mat.zip
638.99 MB
-
235_Cannon_FILT_altLow_STIM.mat.zip
484.55 MB
-
236_Cannon_FILT_altLow_STIM.mat.zip
612.65 MB
-
237_Cannon_FILT_altLow_STIM.mat.zip
525.08 MB
-
238_Cannon_FILT_altLow_STIM.mat.zip
584.78 MB
-
247_Cannon_FILT_altLow_STIM.mat.zip
586.44 MB
-
249_Cannon_FILT_altLow_STIM.mat.zip
551.69 MB
-
251_Cannon_FILT_altLow_STIM.mat.zip
563.84 MB
-
262_Cannon_FILT_altLow_STIM.mat.zip
526.48 MB
-
264_Cannon_FILT_altLow_STIM.mat.zip
382.09 MB
-
269_Cannon_FILT_altLow_STIM.mat.zip
548.09 MB
-
273_Cannon_FILT_altLow_STIM.mat.zip
325.07 MB
-
274_Cannon_FILT_altLow_STIM.mat.zip
314.22 MB
-
276_Cannon_FILT_altLow_STIM.mat.zip
606.44 MB
-
277_Cannon_FILT_altLow_STIM.mat.zip
312.84 MB
-
278_Cannon_FILT_altLow_STIM.mat.zip
532.91 MB
-
333_Cannon_FILT_altLow_STIM.mat.zip
571.19 MB
-
335_Cannon_FILT_altLow_STIM.mat.zip
606.23 MB
-
337_Cannon_FILT_altLow_STIM.mat.zip
607.09 MB
-
338_Cannon_FILT_altLow_STIM.mat.zip
603.15 MB
-
339_Cannon_FILT_altLow_STIM.mat.zip
355.08 MB
-
341_Cannon_FILT_altLow_STIM.mat.zip
504.94 MB
-
342_Cannon_FILT_altLow_STIM.mat.zip
562.56 MB
-
343_Cannon_FILT_altLow_STIM.mat.zip
594.25 MB
-
cannonBehavData_forDryad.zip
1.34 MB
-
README_for_201_Cannon_FILT_altLow_STIM.mat.txt
470 B
Abstract
Learning should be adjusted according to the surprise associated with observed outcomes but calibrated according to statistical context. For example, when occasional changepoints are expected, surprising outcomes should be weighted heavily to speed learning. In contrast, when uninformative outliers are expected to occur occasionally, surprising outcomes should be less influential. Here we dissociate surprising outcomes from the degree to which they demand learning using a predictive inference task and computational modeling. We show that the P300, a stimulus-locked electrophysiological response previously associated with adjustments in learning behavior, does so conditionally on the source of surprise. Larger P300 signals predicted greater learning in a changing context, but less learning in a context where surprise indicated a one-off outlier (oddball). Our results suggest that the P300 provides a surprise signal that is interpreted by downstream learning processes differentially according to statistical context in order to appropriately calibrate learning across complex environments.