Skip to main content
Dryad logo

Data from: Collagen vitrigel promotes hepatocytic differentiation of induced pluripotent stem cells into functional hepatocyte-like cells

Citation

Nakai, Shun et al. (2019), Data from: Collagen vitrigel promotes hepatocytic differentiation of induced pluripotent stem cells into functional hepatocyte-like cells, Dryad, Dataset, https://doi.org/10.5061/dryad.5f3s52r

Abstract

Differentiation of stem cells to hepatocytes provides an unlimited supply of human hepatocytes and therefore has been vigorously studied. However, to date, the stem cell-derived hepatocytes were suggested to be of immature features. To obtain matured hepatocytes from stem cells, we tested the effect of culturing iPS cell-derived endoderm cells on collagen vitrigel membrane and compared with our previous reported nanofiber matrix. We cultured hiPS cell-derived endoderm cells on a collagen vitrigel membrane and examined the expression profiles, and tested the activity of metabolic enzymes. Gene expression profile analysis of hepatocytic differentiation markers revealed that upon culture on collagen vitrigel membrane, immature markers of AFP decreased, with a concomitant increase in the expression of mature hepatocyte transcription factors and mature hepatocyte markers such as ALB, ASGR1. Mature markers involved in liver functions, such as transporters, cytochrome P450 enzymes, phase II metabolic enzymes were also upregulated. We observed the upregulation of the liver markers for at least 2 weeks. Gene array profiling analysis revealed that hiPS cell-derived hepatocyte-like cells (hiPS-hep) resemble that of the primary hepatocytes. Functions of the CYP enzyme activities were tested in multi-institution and all revealed high CYP1A, CYP2C19, CYP2D6, CYP3A activity, which could be maintained for at least 2 weeks in culture. Taken together, the present approach identified that collagen vitrigel membrane provides a suitable environment for the generation of hepatocytes from hiPS cells that resemble many characteristics of primary human hepatocytes.

Usage Notes

References