Skip to main content
Dryad

Engineered cardiac microbundle time-lapse microscopy image dataset

Data files

Aug 07, 2023 version files 3.88 GB
Aug 07, 2023 version files 3.88 GB
Apr 19, 2024 version files 3.88 GB

Abstract

The "Microbundle Time-lapse Dataset" contains 24 experimental time-lapse images of cardiac microbundles using three distinct types of experimental testbeds. Of the 24 experimental time-lapse images, 23 examples are brightfield videos, and a single example is a phase contrast video. We categorize the different experimental testbeds into 3 types, where "Type 1" includes movies obtained from standard experimental microbundle platforms termed microbundle strain gauges [1,2,3]. We refer to data collected from non-standard platforms termed FibroTUGs [4] as "Type 2" data, and "Type 3" data represents a highly versatile and diverse nanofabricated experimental platform [5,6].

References:

[1] Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Engineering Part A. 2012 May 1;18(9-10):910-9.

[2] Xu F, Zhao R, Liu AS, Metz T, Shi Y, Bose P, Reich DH. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. Lab on a Chip. 2015;15(11):2496-503.

[3] Bielawski KS, Leonard A, Bhandari S, Murry CE, Sniadecki NJ. Real-time force and frequency analysis of engineered human heart tissue derived from induced pluripotent stem cells using magnetic sensing. Tissue Engineering Part C: Methods. 2016 Oct 1;22(10):932-40.

[4] DePalma SJ, Davidson CD, Stis AE, Helms AS, Baker BM. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomaterials science. 2021;9(1):93-107.

[5] Jayne RK, Karakan MÇ, Zhang K, Pierce N, Michas C, Bishop DJ, Chen CS, Ekinci KL, White AE. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab on a Chip. 2021;21(9):1724-37.

[6] Karakan MÇ. A Direct-Laser-Written Heart-on-a-Chip Platform for Generation and Stimulation of Engineered Heart Tissues (Doctoral dissertation, Boston University, 2023).