Skip to main content
Dryad logo

Data from: The founding of Mauritian endemic coffee trees by a synchronous long-distance dispersal event

Citation

Nowak, Michael D. et al. (2014), Data from: The founding of Mauritian endemic coffee trees by a synchronous long-distance dispersal event, Dryad, Dataset, https://doi.org/10.5061/dryad.6r52k

Abstract

The stochastic process of long-distance dispersal is the exclusive means by which plants colonize oceanic islands. Baker's rule posits that self-incompatible plant lineages are unlikely to successfully colonize oceanic islands because they must achieve a coordinated long-distance dispersal of sufficiently numerous individuals to establish an outcrossing founder population. Here, we show for the first time that Mauritian Coffea species are self-incompatible and thus represent an exception to Baker's rule. The genus Coffea (Rubiaceae) is composed of approximately 124 species with a paleotropical distribution. Phylogenetic evidence strongly supports a single colonization of the oceanic island of Mauritius from either Madagascar or Africa. We employ Bayesian divergence time analyses to show that the colonization of Mauritius was not a recent event. We genotype S-RNase alleles from Mauritian endemic Coffea, and using S-allele gene genealogies, we show that the Mauritian allelic diversity is confined to just seven deeply divergent Coffea S-RNase allelic lineages. Based on these data, we developed an individual-based model and performed a simulation study to estimate the most likely number of founding individuals involved in the colonization of Mauritius. Our simulations show that to explain the observed S-RNase allelic diversity, the founding population was likely composed of fewer than 31 seeds that were likely synchronously dispersed from an ancestral mainland species.

Usage Notes

References

Location

Madagascar
Mauritius